Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Vocal fold imaging techniques are used by clinicians to examine the vocal folds and allows them to detect vocal pathology and assess the quality of the vocal fold vibrations. Laryngeal stroboscopy is the primary clinical tool used for this purpose. Laryngeal stroboscopy uses a synchronized flashing light passed through either a rigid or flexible laryngoscope to provide an image of the vocal fold motion; the image is created by averaging over several vibratory cycles and is thus not provided in real-time. As this technique relies on periodic vocal fold vibration, it cannot be used in patients with moderate to severe dysphonia. High speed digital imaging of the vocal folds (videokymography), another imaging technique, is not subject to the same limitations as laryngeal stroboscopy. A rigid endoscope is used to take images at a rate of 8000 frames per second, and the image is displayed in real time. As well, this technique allows imaging of aperiodic vibrations and can thus be used with patients presenting with all severities of dysphonia.
Auditory-perceptual measures are the most commonly used tool by clinicians to evaluate the voice quality due to its quick and non-invasive nature. Additionally, these measure have been proven to be reliable in a clinical setting. Ratings are used to evaluate the quality of a patient's voice for a variety of voice features, including overall severity, roughness, breathiness, strain, loudness and pitch. These evaluations are done during spontaneous speech, sentence or passage reading or sustained vowel productions. The GRBAS (Grade, Roughness, Breathiness, Asthenia, Strain) and the CAPE-V (Consensus Auditory Perceptual Evaluation—Voice) are two formal voice rating scales commonly used for this purpose.
A number of operations that cut one of the nerves of the vocal folds (the recurrent laryngeal nerve) has improved the voice of many for several months to several years but the improvement may be temporary.
An operation called "selective laryngeal adductor denervation-rennervation (SLAD-R)" is effective specifically for adductor spasmodic dysphonia which has shown good outcomes in about 80% of people at 8 years. Post-surgery voices can be imperfect and about 15% of people have significant difficulties. If symptoms do recur this is typically in the first 12 months. Another operation called "recurrent laryngeal nerve avulsion" has positive outcomes of 80% at three years.
Another surgical option is a thyroplasty, which ultimately changes the position or length of the vocal folds. After thyroplasty there is an increase in both objective and subjective measures of speech.
Voice therapy appears to be ineffective in cases of true spasmodic dysphonia, however as it is difficult to distinguish between spasmodic dysphonia and functional dysphonias and misdiagnosis is relatively common, a trial of voice therapy is often recommended before more invasive procedures are tried. Some also state that it is useful for mild symptoms and as an add-on to botox therapy and others report success in more severe cases. Laryngeal manual therapy, which is massaging of the neck and cervical structures, also shows positive results for intervention of functional dysphonia.
Meige's is commonly misdiagnosed and most doctors will have not seen this condition before. Usually a neurologist who specializes in movement disorders can detect Meige's. There is no way to detect Meige's by blood test or MRI or CT scans. OMD by itself may be misdiagnosed as TMJ.
The lack of prompt response to anticholinergic drugs in cases of idiopathic Meige's syndrome is important in differentiating it from acute dystonia, which does respond to anticholinergics.
There is no cure for torsion dystonia. However, there are several medical approaches that can be taken in order to lessen the symptoms of the disease. The treatment must be patient specific, taking into consideration all of the previous and current health complications. The doctor that creates the treatment must have intimate knowledge of the patients’ health and create a treatment plan that covers all of the symptoms focusing on the most chronic areas.
The first step for most with the disorder begins with some form of physical therapy in order for the patient to gain more control over the affected areas. The therapy can help patients with their posture and gain control over the areas of their body that they have the most problems with.
The second step in the treatment process is medication. The medications focus on the chemicals released by neurotransmitters in the nervous system, which control muscle movement. The medications on the market today are anticholinergics, benzodiazepines, baclofen, dopaminergic agents/dopamine-depleting agents, and tetrabenazine. Each medication is started on a low dosage and gradually increased to higher doses as the disease progresses and the side effects are known for the individual.
A more site-specific treatment is the injection of botulinum toxin. It is injected directly into the muscle and works much the same way the oral medications do—by blocking neurotransmitters. The injections are not a treatment for the disease, but are a means to control its symptoms.
A fourth option in the treatment for the symptoms of torsion dystonia is surgery. Surgery is performed only if the patient does not respond to the oral medications or the injections. The type of surgery performed is specific to the type of dystonia that the patient has.
Surgery, such as the denervation of selected muscles, may also provide some relief; however, the destruction of nerves in the limbs or brain is not reversible and should be considered only in the most extreme cases. Recently, the procedure of deep brain stimulation (DBS) has proven successful in a number of cases of severe generalised dystonia. DBS as treatment for medication-refractory dystonia, on the other hand, may increase the risk of suicide in patients. However, reference data of patients without DBS therapy are lacking.
While research in the area of effectiveness of physical therapy intervention for dystonia remains weak, there is reason to believe that rehabilitation will benefit patients with dystonia. Physical therapy can be utilized to manage changes in balance, mobility and overall function that occur as a result of the disorder. A variety of treatment strategies can be employed to address the unique needs of each individual. Potential treatment interventions include splinting, therapeutic exercise, manual stretching, soft tissue and joint mobilization, postural training and bracing, neuromuscular electrical stimulation, constraint-induced movement therapy, activity and environmental modification, and gait training.
A patient with dystonia may have significant challenges in activities of daily living (ADL), an area especially suited for treatment by occupational therapy (OT). An occupational therapist (OT) may perform needed upper extremity splinting, provide movement inhibitory techniques, train fine motor coordination, provide an assistive device, or teach alternative methods of activity performance to achieve a patient's goals for bathing, dressing, toileting, and other valued activities.
Recent research has investigated further into the role of physiotherapy in the treatment of dystonia. A recent study showed that reducing psychological stress, in conjunction with exercise, is beneficial for reducing truncal dystonia in patients with Parkinson’s Disease. Another study emphasized progressive relaxation, isometric muscle endurance, dynamic strength, coordination, balance, and body perception, seeing significant improvements to patients’ quality of life after 4 weeks.
Since the root of the problem is neurological, doctors have explored sensorimotor retraining activities to enable the brain to "rewire" itself and eliminate dystonic movements. The work of several doctors such as Nancy Byl and Joaquin Farias has shown that sensorimotor retraining activities and proprioceptive stimulation can induce neuroplasticity, making it possible for patients to recover substantial function that was lost due to Cervical Dystonia, hand dystonia, blepharospasm, oromandibular dystonia, dysphonia and musicians' dystonia.
Some focal dystonias have been proven treatable through movement retraining in the Taubman approach, particularly in the case of musicians. However other focal dystonias may not respond and may even be made worse by this treatment.
Due to the rare and variable nature of dystonia, research investigating the effectiveness of these treatments is limited. There is no "gold standard" for physiotherapy rehabilitation. To date, focal cervical dystonia has received the most research attention; however, study designs are poorly controlled and limited to small sample sizes.
A 1969 study of torsion dystonia patients found an average IQ 10 points higher than controls matched for age, sex and ethnic background.
The main symptoms involve involuntary blinking and chin thrusting. Some patients may experience excessive tongue protrusion, squinting, light sensitivity, muddled speech, or uncontrollable contraction of the platysma muscle. Some Meige's patients also have "laryngeal dystonia" (spasms of the larynx). Blepharospasm may lead to embarrassment in social situations, and oromandibular dystonia can affect speech, making it difficult to carry on the simplest conversations. This can cause difficulty in both personal and professional contexts, and in some cases may cause patients to withdraw from social situations.
The condition tends to affect women more frequently than men.
Usually the diagnosis is established on clinical grounds. Tremors can start at any age, from birth through advanced ages (senile tremor). Any voluntary muscle in the body may be affected, although the tremor is most commonly seen in the hands and arms and slightly less commonly in the neck (causing the person's head to shake), tongue, and legs. A resting tremor of the hands is sometimes present. Tremor occurring in the legs might be diagnosable as orthostatic tremor.
ET occurs within multiple neurological disorders besides Parkinson's Disease. This includes migraine disorders, where co-occurrences between ET and migraines have been examined.
Although essential tremor is often mild, people with severe tremor have difficulty performing many of their routine activities of daily living. ET is generally progressive in most cases (sometimes rapidly, sometimes very slowly), and can be disabling in severe cases.
Oromandibular dystonia is a form of focal dystonia affecting the mouth, jaw and tongue, and in this disease it is hard to speak. It is associated with bruxism.
Botulinum toxin has been used in treatment.
Since the root of the problem is neurological, doctors have explored sensorimotor retraining activities to enable the brain to "rewire" itself and eliminate dystonic movements. The work of several doctors such as Nancy Byl and Joaquin Farias has shown that sensorimotor retraining activities and proprioceptive stimulation can induce neuroplasticity, making it possible for patients to recover substantial function that was lost due to Cervical Dystonia, oromandibular dystonia and dysphonia.
Developmental verbal dyspraxia is a developmental inability to motor plan volitional movement for the production of speech in the absence of muscular weakness. Research has suggested links to the FOXP2 gene.
There are two types of Apraxia. Developmental (or Childhood Apraxia of speech) or acquired Apraxia. Childhood apraxia of speech (CAS) is a neurological childhood speech sound disorder that involves impaired precision and consistency of movements required for speech production without any neuromuscular deficits (ASHA, 2007a, Definitions of CAS section, para. 1). Both are the inability to plan volitional motor movements for speech production in the absence of muscular weakness. Apraxia is not a result of sensory problems, or physical issues with the articulatory structures themselves, simply the way the brain plans to move them.
Voice disorders are medical conditions involving abnormal pitch, loudness or quality of the sound produced by the larynx and thereby affecting speech production. These include:
- Puberphonia
- Chorditis
- Vocal fold nodules
- Vocal fold cysts
- Vocal cord paresis
- Reinke's edema
- Spasmodic dysphonia
- Foreign accent syndrome
- Bogart–Bacall syndrome
- Laryngeal papillomatosis
- Laryngitis
Since lateral medullary syndrome is often caused by a stroke, diagnosis is time dependent. Diagnosis is usually done by assessing vestibular-related symptoms in order to determine where in the medulla that the infarction has occurred. Head Impulsive Nystagmus Test of Skew (HINTS) examination of oculomotor function is often performed, along with computed tomography (CT) or magnetic resonance imaging (MRI) to assist in stroke detection. Standard stroke assessment must be done to rule out a concussion or other head trauma.
Bogart–Bacall syndrome (BBS) is a voice disorder that is caused by abuse or overuse of the vocal cords.
People who speak or sing outside their normal vocal range can develop BBS; symptoms are chiefly an unnaturally deep or rough voice, or dysphonia, and vocal fatigue. The people most commonly afflicted are those who speak in a low-pitched voice, particularly if they have poor breath and vocal control. The syndrome can affect both men and women.
In 1988 an article was published, describing a discrete type of vocal dysfunction which results in men sounding like Humphrey Bogart and women sounding like Lauren Bacall. BBS is now the medical term for an ongoing hoarseness that often afflicts actors, singers or TV/radio voice workers who routinely speak in a very low pitch.
Treatment usually involves voice therapy by a speech language pathologist.
In 2006, the U.S. Department of Education indicated that more than 1.4 million students were served in the public schools' special education programs under the speech or language impairment category of IDEA 2004. This estimate does not include children who have speech/language problems secondary to other conditions such as deafness; this means that if all cases of speech or language impairments were included in the estimates, this category of impairment would be the largest. Another source has estimated that communication disorders—a larger category, which also includes hearing disorders—affect one of every 10 people in the United States.
ASHA has cited that 24.1% of children in school in the fall of 2003 received services for speech or language disorders—this amounts to a total of 1,460,583 children between 3 –21 years of age. Again, this estimate does not include children who have speech/language problems secondary to other conditions. Additional ASHA prevalence figures have suggested the following:
- Stuttering affects approximately 4% to 5% of children between the ages of 2 and 4.
- ASHA has indicated that in 2006:
- Almost 69% of SLPs served individuals with fluency problems.
- Almost 29% of SLPs served individuals with voice or resonance disorders.
- Approximately 61% of speech-language pathologists in schools indicated that they served individuals with SLI
- Almost 91% of SLPs in schools indicated that they servedindividuals with phonological/articulation disorder
- Estimates for language difficulty in preschool children range from 2% to 19%.
- Specific Language Impairment (SLI) is extremely common in children, and affects about 7% of the childhood population.
Treatment for lateral medullary syndrome involves focusing on relief of symptoms and active rehabilitation to help patients return to their daily activities. Speech Therapy is a very common form of rehabilitation that many patients undergo. Depressed mood and withdrawal from society can be seen in patients following the initial onslaught of symptoms.
In more severe cases, a feeding tube may need to be inserted through the mouth or a gastrostomy may be necessary if swallowing is impaired. In some cases, medication may be used to reduce or eliminate residual pain. Some studies have reported success in mitigating the chronic neuropathic pain associated with the syndrome with anti-epileptics such as gabapentin. Long term treatment generally involves the use of antiplatelets like aspirin or clopidogrel and statin regimen for the rest of their lives in order to minimize the risk of another stroke. Warfarin is used if atrial fibrillation is present. Other medications may be necessary in order to suppress high blood pressure and risk factors associated with strokes. A blood thinner may be prescribed to a patient in order to break up the infarction and reestablish blood flow and to try to prevent future infarctions.
One of the most unusual and difficult to treat symptoms that occur due to Wallenberg syndrome are interminable, violent hiccups. The hiccups can be so severe that patients often struggle to eat, sleep and carry on conversations. Depending on the severity of the blockage caused by the stroke, the hiccups can last for weeks. Unfortunately there are very few successful medications available to mediate the inconvenience of constant hiccups.
For dysphagia symptoms, Repetitive transcranial magnetic stimulation has been shown to assist in rehabilitation. Overall, traditional stroke assessment and outcomes are used to treat patients, since lateral medullary syndrome is often a cause of a stroke in the lateral medulla.
Treatment for this disorder can be disconcerting because some individuals will always have residual symptoms due to the severity of the blockage as well as the location of the infarction. Two patients may present with the same initial symptoms right after the stroke has occurred, but after several months one patient may fully recover while the other is still severely handicapped. This variation in outcome may be due to but not limited to the size of the infarction, the location of the infarction, and how much damage resulted from it.
Jugular foramen syndrome, or Vernet's syndrome is characterized by the paresis of 9th–11th (with or without 12th) cranial nerves together.
LPR presents with non-specific symptoms and signs that make differential diagnosis difficult to achieve. Furthermore, symptoms of the disorder overlap greatly with symptoms of other disorders. Therefore, LPR is under-diagnosed and under-treated. As there are multiple potential etiologies for the respiratory and laryngeal symptoms of LPR, diagnosing LPR based on symptoms alone is unreliable. Laryngoscopic findings such as erythema, edema, laryngeal granulomas, and interarytenoid hypertrophy have been used to establish the diagnosis; however, these findings are nonspecific and have been described in the majority of asymptomatic subjects undergoing laryngoscopy. Response to acid-suppression therapy has been suggested as a diagnostic tool for confirming diagnosis of LPR, but studies have shown that the response to empirical trials of such therapy (as with proton-pump inhibitors) in these patients is often disappointing. Several studies have emphasized the importance of measuring proximal esophageal, or ideally pharyngeal acid exposure, in patients with clinical symptoms of LPR to document reflux as the cause of the symptoms.
Additionally, several potential biomarkers of LPR have been investigated. These include inflammatory cytokines, carbonic anyhydrase, E-cadherin and mucins; however, their direct implications in LPR are still being established. The presence of pepsin, an enzyme produced in the stomach, in the hypopharynx has also become an increasingly researched biomarker for LPR. Research suggests that the stomach enzyme pepsin plays a crucial role in the complex mechanism behind LPR.
Before a diagnosis can be made, a physician will need to record the patient’s medical history and ask for details about the presenting symptoms. Questionnaires such as the Reflux Symptom Index (RSI), Quality-of-Life Index (QLI) for LPR, Glottal Closure/Function Index (GCI) and Voice Handicap Index (VHI) can be administered to gain information about the patient's medical history as well as their symptomatology. A physical examination will then need to be performed with particular concentration around the head and neck. A scope with a specialized camera lens made of fiber optic strands is gently fed down the throat and feeds back images to a monitor. This provides a clear view of the throat and larynx. Signs of LPR include redness, swelling, and obvious irritation. Other, more invasive tests, such as fibre-optic transnasal laryngoscopy, 24-hour ambulatory dual probe pHmetry, pharyngeal pHmetry, transnasal esophagoscopy (TNE) and biopsy may be used. A noninvasive test for diagnosis of LPR is the collection of refluxate where the refluxed material is collected and analyzed. Another noninvasive diagnostic test that can be used is an empirical trial of proton-pump inhibitor therapy; however, this test is mostly successful in diagnosing GERD.
There is no agreed-upon assessment technique to identify LPR in children. Of the debated diagnostic tools, multichannel intraluminal impedance with pH monitoring (MII-pH) is used as it recognizes both acid and non-acid reflux. A more common technique that is used is 24-hour dual probe pH monitoring. Both of these tools are expensive and are therefore not widely used.
Speech-language pathologists (SLPs) offer many services to children with speech or language disabilities.
Macroglossia is usually diagnosed clinically. Sleep endoscopy and imaging may be used for assessment of obstructive sleep apnea. The initial evaluation of all patients with macroglossia may involve abdominal ultrasound and molecular studies for Beckwith–Wiedemann syndrome.
Most children who develop epilepsy are treated conventionally with anticonvulsants. In about 70% of cases of childhood epilepsy, medication can completely control seizures. Unfortunately, medications come with an extensive list of side effects that range from mild discomfort to major cognitive impairment. Usually, the adverse cognitive effects are ablated following dose reduction or cessation of the drug.
Medicating a child is not always easy. Many pills are made only to be swallowed, which can be difficult for a child. For some medications, chewable versions do exist.
The ketogenic diet is used to treat children who have not responded successfully to other treatments. This diet is low in carbohydrates, adequate in protein and high in fat. It has proven successful in two thirds of epilepsy cases.
In some cases, severe epilepsy is treated with the hemispherectomy, a drastic surgical procedure in which part or all of one of the hemispheres of the brain is removed.