Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Following diagnosis and histopathological analysis, the patient will usually undergo magnetic resonance imaging (MRI), ultrasonography, and a bone scan in order to determine the extent of local invasion and metastasis. Further investigational techniques may be necessary depending on tumor sites. A parameningeal presentation of RMS will often require a lumbar puncture to rule out metastasis to the meninges. A paratesticular presentation will often require an abdominal CT to rule out local lymph node involvement, and so on. Patient outcomes are most strongly tied to the extent of the disease, so it is important to map its presence in the body as soon as possible in order to decide on a treatment plan.
The current staging system for rhabdomyosarcoma is unusual relative to most cancers. It utilizes a modified TNM (tumor-nodes-metastasis) system originally developed by the IRSG. This system accounts for tumor size (> or <5 cm), lymph node involvement, tumor site, and presence of metastasis. It grades on a scale of 1 to 4 based on these criteria. In addition, patients are sorted by clinical group (from the clinical groups from the IRSG studies) based on the success of their first surgical resection. The current Children's Oncology Group protocols for the treatment of RMS categorize patients into one of four risk categories based on tumor grade and clinical group, and these risk categories have been shown to be highly predictive of outcome.
Rhabdomyosarcoma is often difficult to diagnose due to its similarities to other cancers and varying levels of differentiation. It is loosely classified as one of the “small, round, blue-cell cancer of childhood” due to its appearance on an H&E stain. Other cancers that share this classification include neuroblastoma, Ewing sarcoma, and lymphoma, and a diagnosis of RMS requires confident elimination of these morphologically similar diseases. The defining diagnostic trait for RMS is confirmation of malignant skeletal muscle differentiation with myogenesis (presenting as a plump, pink cytoplasm) under light microscopy. Cross striations may or may not be present. Accurate diagnosis is usually accomplished through immunohistochemical staining for muscle-specific proteins such as myogenin, muscle-specific actin, desmin, D-myosin, and myoD1. Myogenin, in particular, has been shown to be highly specific to RMS, although the diagnostic significance of each protein marker may vary depending on the type and location of the malignant cells. The alveolar type of RMS tends to have stronger muscle-specific protein staining. Electron microscopy may also aid in diagnosis, with the presence of actin and myosin or Z bands pointing to a positive diagnosis of RMS. Classification into types and subtypes is accomplished through further analysis of cellular morphology (alveolar spacings, presence of cambium layer, aneuploidy, etc.) as well as genetic sequencing of tumor cells. Some genetic markers, such as the "PAX3-FKHR" fusion gene expression in alveolar RMS, can aid in diagnosis. Open biopsy is usually required to obtain sufficient tissue for accurate diagnosis. All findings must be considered in context, as no one trait is a definitive indicator for RMS.
Urine catecholamine level can be elevated in pre-clinical neuroblastoma. Screening asymptomatic infants at three weeks, six months, and one year has been performed in Japan, Canada, Austria and Germany since the 1980s. Japan began screening six-month-olds for neuroblastoma via analysis of the levels of homovanillic acid and vanilmandelic acid in 1984. Screening was halted in 2004 after studies in Canada and Germany showed no reduction in deaths due to neuroblastoma, but rather caused an increase in diagnoses that would have disappeared without treatment, subjecting those infants to unnecessary surgery and chemotherapy.
The symptoms of childhood rhabdomyosarcoma are visible and prominent and include swollen red lumps where the cancer starts developing. The lumps are hard and can grow in size unless treated. Other symptoms include poor bowel movements, blood in the urine, secretions from the genitals and nose, and headaches. Various tests can determine whether these related symptoms indicate childhood rhabdomyosarcoma. CT, X-ray, MRI, bone scans, and Ultrasounds may be performed to identify the location and size of the cancer. Biopsies of the lump can be taken along with bone marrow biopsies to detect whether the cancer has spread within the marrow, the bone, and the blood supply. Further determination of how aggressive and large the cancer is requires these scans.
DSRCT is frequently misdiagnosed. Adult patients should always be referred to a sarcoma specialist. This is an aggressive, rare, fast spreading tumor and both pediatric and adult patients should be treated at a sarcoma center.
There is no standard protocol for the disease; however, recent journals and studies have reported that some patients respond to high-dose (P6 Protocol) chemotherapy, maintenance chemotherapy, debulking operation, cytoreductive surgery, and radiation therapy. Other treatment options include: hematopoietic stem cell transplantation, intensity-modulated radiation Therapy, radiofrequency ablation, stereotactic body radiation therapy, intraperitoneal hyperthermic chemoperfusion, and clinical trials.
Esthesioneuroblastoma is a slow developing but malignant tumor with high reoccurrence rates because of its anatomical position. The tumor composition, location and metastatic characteristics as well as the treatment plan determine prognosis. Common clinical classification systems for esthesioneuroblastoma include the Kadish classification and the Dulguerov classfictation. Histopathological characteristics on top of Kadish classification can further determine cancer prognosis. In severe, Kadish class C tumors, Haym's grades of pathology are important for prognosis. Patients with low grade Kadish class C tumors have a 10-year survival rate of 86 percent compared to patients with high grade class C tumors who have a survival rate of 28 percent. Surgically treated patients with high grade tumors are more likely to experience leptomeningeal metastases or involvement of the cerebral spinal fluid unlike patients with low grade tumors who usually only see local recurrence. Survival rates for treated esthesioneuroblastoma are best for surgery with radiotherapy (65%), then for radiotherapy and chemotherapy (51%), just surgery (48%), surgery, radiotherapy and chemotherapy (47) and finally just radiotherapy (37%). From the literature, radiotherapy and surgery seem to boast the best outcome for patients. However, it is important to understand that to some degree, prognosis is related to tumor severity. More progressed, higher grade tumors would result in chemotherapy or radiotherapy as the only treatment. It is no surprise that the prognosis would be worse in these cases.
Because this is a rare tumor, not many family physicians or oncologists are familiar with this disease. DSRCT in young patients can be mistaken for other abdominal tumors including rhabdomyosarcoma, neuroblastoma, and mesenteric carcinoid. In older patients DSRCT can resemble lymphoma, peritoneal mesothelioma, and peritoneal carcinomatosis. In males DSRCT may be mistaken for germ cell or testicular cancer while in females DSRCT can be mistaken for Ovarian cancer. DSRCT shares characteristics with other small-round blue cell cancers including Ewing's sarcoma, acute leukemia, small cell mesothelioma, neuroblastoma, primitive neuroectodermal tumor, rhabdomyosarcoma, and Wilms' tumor.
Childhood rhabdomyosarcoma has been fatal. Recovery rates have increased by 50 percent since 1975. In children five years of age or younger survival rates are up to 65 percent. In adolescents younger than 15 years old, the survival rate has increased up to 30 percent.
Esthesioneuroblastoma can resemble small blue cell tumors like squamous cell carcinoma, sinonasal undifferentiated carcinoma, extranodal NK/T cell lymphoma, nasal type, rhabdomyosarcoma, Ewing/PNET, mucosal malignant melanoma and neuroendocrine carcinomas (NEC) that occur in the intranasal tract. Compared to other tumors in the region, esthesioneuroblastoma has the best prognosis, with an overall 5 year survival rate of 60-80%. Fewer than 700 cases have been documented in the United States alone. Esthesioneuroblastoma is characterized by neurofibrillary stroma and neurosecretary granules that are not seen concurrently by any other pathologies in the region. Histological tests such as keratin, CK5/6, S-100 protein or NSE can be run to further differentiate esthesioneuroblastoma from other tumors.
The only reliable way to determine whether a soft-tissue tumour is benign or malignant is through a biopsy. There are two methods for acquisition of tumour tissue for cytopathological analysis;
- Needle Aspiration, via biopsy needle
- surgically, via an incision made into the tumour.
A pathologist examines the tissue under a microscope. If cancer is present, the pathologist can usually determine the type of cancer and its grade. Here, 'grade' refers to a scale used to represent concisely the predicted growth rate of the tumour and its tendency to spread, and this is determined by the degree to which the cancer cells appear abnormal when examined under a microscope. Low-grade sarcomas, although cancerous, are defined as those that are less likely to metastasise. High-grade sarcomas are defined as those more likely to spread to other parts of the body.
For soft-tissue sarcoma there are two histological grading systems : the National Cancer Institute (NCI) system and the French Federation of Cancer Centers Sarcoma Group (FNCLCC) system.
Soft tissue sarcomas commonly originate in the upper body, in the shoulder or upper chest. Some symptoms are uneven posture, pain in the trapezius muscle and cervical inflexibility [difficulty in turning the head].
The most common site to which soft tissue sarcoma spreads is the lungs.
Regardless of location, all rhabdoid tumours are highly aggressive, have a poor prognosis, and tend to occur in children less than two years of age.
A 2009 revision of the traditional Chompret criteria for screening has been proposed:
A proband who has:
- tumor belonging to the LFS tumor spectrum - soft tissue sarcoma, osteosarcoma, pre-menopausal breast cancer, brain tumor, adrenocortical carcinoma, leukemia or lung bronchoalveolar cancer - before age 46 years;
and at least one of the following:
- at least one first or second degree relative with an LFS tumour (except breast cancer if the proband has breast cancer) before age 56 years or with multiple tumours
- a proband with multiple tumours (except multiple breast tumours), two of which belong to the LFS tumour spectrum and the first of which occurred before age 46 years
- a proband who is diagnosed with adrenocortical carcinoma or choroid plexus tumour, irrespective of family history
The standard work-up for AT/RT includes:
- Magnetic resonance imaging (MRI) of the brain and spine
- Lumbar puncture to look for M1 disease
- Computed tomography (CT) of chest and abdomen to check for a tumor
- Bone marrow aspiration to check for bone tumors. Sometimes the physician will perform a stem cell transplant
- Bone marrow biopsy
- Bone scan
The initial diagnosis of a tumor is made with a radiographic study (MRI or CT-). If CT was performed first, an MRI is usually performed as the images are often more detailed and may reveal previously undetected metastatic tumors in other locations of the brain. In addition, an MRI of the spine is usually performed. The AT/RT tumor often spreads to the spine. AT/RT is difficult to diagnose only from radiographic study; usually, a pathologist must perform a cytological or genetic analysis.
Examination of the cerebrospinal fluid is important (CSF), as one-third of patients will have intracranial dissemination with involvement of the CSF. Large tumor cells, eccentricity of the nuclei, and prominent nucleoli are consistent findings. Usually only a minority of AT/RT biopsies have rhabdoid cells, making diagnosis more difficult. Increasingly it is recommended that a genetic analysis be performed on the brain tumor, especially to find if a deletion in the INI1/hSNF5 gene is involved (appears to account for over 80% of the cases). The correct diagnosis of the tumor is critical to any protocol. Studies have shown that 8% to over 50% of AT/RT tumors are diagnosed incorrectly.
Genetic counseling and genetic testing are used to confirm that somebody has this gene mutation. Once such a person is identified, early and regular screenings for cancer are recommended for him or her as people with Li–Fraumeni are likely to develop another primary malignancy at a future time (57% within 30 years of diagnosis).
Patients who have been diagnosed with ARMS often have poor outcomes. The four year survival rate without remission for local ARMS tumors is 65 percent, while the four year survival rate with metastatic ARMS is only 15 percent. Patients who have metastatic ARMS positive with PAX3-FOXO1 fusion often have a poorer outcome than patients positive with PAX7-FOXO1 fusion, with a four-year survival rate of 8 percent and 75 percent respectively. Other variables affect the four year survival rate, such as, primary tumor site, size of primary tumor, amount of local invasion, number of distal lymph nodes spread to, and whether metastasis has occurred. Prognosis for patients who have primary tumor sites within the bones often have higher survival rates and respond well to treatment options. While patients who have primary tumor sites within the nasopharynx region with metastases to the breast have very poor outcomes. Patients who are fusion protein negative with low risk clinical features should be treated with reduced therapy, while patients who are fusion protein positive with low risk clinical features should be treated as an intermediate risk and have more intensive therapy regimens.
Another way to detect neuroblastoma is the mIBG scan (meta-iodobenzylguanidine), which is taken up by 90 to 95% of all neuroblastomas, often termed "mIBG-avid." The mechanism is that mIBG is taken up by sympathetic neurons, and is a functioning analog of the neurotransmitter norepinephrine. When it is radio-ionated with I-131 or I-123 (radioactive iodine isotopes), it is a very good radiopharmaceutical for diagnosis and monitoring of response to treatment for this disease. With a half-life of 13 hours, I-123 is the preferred isotope for imaging sensitivity and quality. I-131 has a half-life of 8 days and at higher doses is an effective therapy as targeted radiation against relapsed and refractory neuroblastoma.
NMC when viewed microscopically, are poorly differentiated carcinomas which show abrupt transitions to islands of well-differentiated squamous epithelium. This tumor pattern is not specific or unique to NUT midline carcinoma, but this pattern is most suggestive of the diagnosis. The neoplastic cells will show a positive reaction with various cytokeratins, p63, CEA, and CD34 immunohistochemistry. However, the NUT antibody confirms the diagnosis (although only available in a limited number of laboratories).
The differential diagnosis is quite wide, but it is important to consider this tumor type when seeing a poorly differentiated tumor that shows abrupt areas of keratinization. Other tumors included in the differential diagnosis are sinonasal undifferentiated carcinomas, Ewing sarcoma/Primitive neuroectodermal tumor, leukemia, rhabdomyosarcoma, and melanoma. When NUT midline carcinoma is seen in the head and neck, the squamous lining of the cavities may be entrapped by the neoplastic cells, and so it is important to document the carcinoma cells in the rest of the tumor by a variety of stains (including cytokeratin or p63). One of the most helpful and characteristic findings is the focal abrupt squamous differentiation, where stratification and gradual differentiation are absent, resembling a Hassall corpuscle of the thymus.
The defining feature of NMCs is rearrangement of the "NUT" gene.
Most common is a translocation involving the BRD4 gene and NUT gene (t(15;19)(q13;p13.1)).
ARMS usually occurs in the skeletal muscle tissue of the extremities, but it is still very common in the torso, head, and neck regions. The primary tumor often presents itself as a soft mass of tissue that is painless, but the tumor can be detected if it starts to put pressure on other structures in the primary site. A large fraction of patients who are diagnosed with ARMS, roughly 25-30 percent, will have metastases at the time of diagnosis. The standard sites for metastases to form are the bone marrow, the bones, and distal nodes. Typical treatment options for patients who have been diagnosed with ARMS include standard surgery, radiation therapy, and intensive chemotherapy.
The prognosis for rhabdomyosarcoma has improved greatly in recent decades, with over 70% of patients surviving for five years after diagnosis.
AT/RTs can occur at any sites within the CNS; however, about 60% are located in the posterior fossa or cerebellar area. The ASCO study showed 52% posterior fossa; 39% sPNET; 5% pineal; 2% spinal, and 2% multifocal.
The tumors' appearance on CT and MRI are not specific, tending towards large size, calcifications, necrosis (tissue death), and hemorrhage (bleeding). Radiological studies alone cannot identify AT/RT; a pathologist almost always has to evaluate a brain tissue sample.
The increased cellularity of the tumor may make the appearance on an uncontrasted CT to have increased attenuation. Solid parts of the tumor often enhance with contrast MRI finding on T1 and T2 weighted images are variable. Precontrast T2 weighted images may show an isosignal or slightly hypersignal. Solid components of the tumor may enhance with contrast, but not always. MRI studies appear to be more able to pick up metastatic foci in other intracranial locations, as well as intraspinal locations.
Preoperative and follow-up studies are needed to detect metastatic disease.
The histologic diagnosis of malignant rhabdoid tumour depends on identification of characteristic rhabdoid cells—large cells with eccentrically located nuclei and abundant, eosinophilic cytoplasm. However, the histology can be heterogeneous and the diagnosis of MRT can often be difficult. Misclassifications can occur.
In MRTs, the INI1 gene (SMARCB1)on chromosome 22q functions as a classic tumour suppressor gene. Inactivation of INI1 can occur via deletion, mutation, or acquired UPD.
In a recent study, SNP array karyotyping identified deletions or LOH of 22q in 49/51 rhabdoid tumours. Of these, 14 were copy neutral LOH (or acquired UPD), which is detectable by SNP array karyotyping, but not by FISH, cytogenetics, or arrayCGH. MLPA detected a single exon homozygous deletion in one sample that was below the resolution of the SNP array. SNP array karyotyping can be used to distinguish, for example, a medulloblastoma with an isochromosome 17q from a primary rhabdoid tumour with loss of 22q11.2. When indicated, molecular analysis of INI1 using MLPA and direct sequencing may then be employed. Once the tumour-associated changes are found, an analysis of germline DNA from the patient and the parents can be done to rule out an inherited or de novo germline mutation or deletion of INI1, so that appropriate recurrence risk assessments can be made.
On conventional radiographs, the most common osseous presentation is a permeative lytic lesion with periosteal reaction. The classic description of lamellated or "onion-skin" type periosteal reaction is often associated with this lesion. Plain films add valuable information in the initial evaluation or screening. The wide zone of transition (e.g. permeative) is the most useful plain film characteristic in differentiation of benign versus aggressive or malignant lytic lesions.
Magnetic resonance imaging (MRI) should be routinely used in the work-up of malignant tumors. It will show the full bony and soft tissue extent and relate the tumor to other nearby anatomic structures (e.g. vessels). Gadolinium contrast is not necessary as it does not give additional information over noncontrast studies, though some current researchers argue that dynamic, contrast-enhanced MRI may help determine the amount of necrosis within the tumor, thus help in determining response to treatment prior to surgery.
Computed axial tomography(CT) can also be used to define the extraosseous extent of the tumor, especially in the skull, spine, ribs, and pelvis. Both CT and MRI can be used to follow response to radiation and/or chemotherapy. Bone scintigraphy can also be used to follow tumor response to therapy.
In the group of malignant small round cell tumors which include Ewing's sarcoma, bone lymphoma, and small cell osteosarcoma, the cortex may appear almost normal radiographically, while permeative growth occurs throughout the Haversian channels. These tumours may be accompanied by a large soft-tissue mass while almost no bone destruction is visible. The radiographs frequently do not shown any signs of cortical destruction.
Radiographically, Ewing's sarcoma presents as "moth-eaten" destructive radiolucencies of the medulla and erosion of the cortex with expansion.
Other entities with similar clinical presentations include osteomyelitis, osteosarcoma (especially telangiectatic osteosarcoma), and eosinophilic granuloma. Soft-tissue neoplasms such as pleomorphic undifferentiated sarcoma (malignant fibrous histiocytoma) that erode into adjacent bone may also have a similar appearance.
VAS appears as a rapidly growing firm mass in and under the skin. The mass is often quite large when first detected and can become ulcerated or infected. It often contains fluid-filled cavities, probably because of its rapid growth. Diagnosis of VAS is through a biopsy. The biopsy will show the presence of a sarcoma, but information like location and the presence of inflammation or necrosis will increase the suspicion of VAS. It is possible for cats to have a granuloma form after vaccination, so it is important to differentiate between the two before radical surgery is performed. One guideline for biopsy is if a growth is present three months after surgery, if a growth is greater than two centimeters, or if a growth is becoming larger one month after vaccination.
X-rays are taken prior to surgery because about one in five cases of VAS will develop metastasis, usually to the lungs but possibly to the lymph nodes or skin.
NUT midline carcinoma is very resistant to standard chemotherapy treatments. The tumor may initially respond to therapy, and then rapid recurrence is experienced, followed by death. A multimodality approach to treatment is advocated, especially since most patients present with advanced disease. Treatment must be tailored to the individual patient, with several promising new targeted molecular therapies in clinical trials. Specific molecular targeted therapies (BET inhibitors and histone deacetylase inhibitors (HDACi)) may help to yield growth arrest of the neoplastic cells. Overall, there is a mean survival of 6–9 months.