Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Arts syndrome should be included in the differential diagnosis of infantile hypotonia and weakness aggravated by recurrent infection with a family history of X-linked inheritance. Sequence analysis of PRPS1, the only gene associated with Arts syndrome, has detected mutations in both kindreds reported to date. Arts syndrome patients were also found to have reduced levels of hypoxanthine levels in urine and uric acid levels in the serum. In vitro, PRS-1 activity was reduced in erythrocytes and fibroblasts.
Clinical examination and MRI are often the first steps in a MLD diagnosis. MRI can be indicative of MLD, but is not adequate as a confirming test.
An ARSA-A enzyme level blood test with a confirming urinary sulfatide test is the best biochemical test for MLD. The confirming urinary sulfatide is important to distinguish between MLD and pseudo-MLD blood results.
Genomic sequencing may also confirm MLD, however, there are likely more mutations than the over 200 already known to cause MLD that are not yet ascribed to MLD that cause MLD so in those cases a biochemical test is still warranted.
"For further information, see the MLD Testing page at MLD Foundation."
While the clinical picture may point towards the diagnosis of the Roussy–Lévy syndrome, the condition can only be confirmed with absolute certainty by carrying out genetic testing in order to identify the underlying mutations.
Currently, purine replacement via S-adenosylmethionine (SAM) supplementation in people with Arts syndrome appears to improve their condition. This suggests that SAM supplementation can alleviate symptoms of PRPS1 deficient patients by replacing purine nucleotides and open new avenues of therapeutic intervention. Other non-clinical treatment options include educational programs tailored to their individual needs. Sensorineural hearing loss has been treated with cochlear implantation with good results. Ataxia and visual impairment from optic atrophy are treated in a routine manner. Routine immunizations against common childhood infections and annual influenza immunization can also help prevent any secondary infections from occurring.
Regular neuropsychological, audiologic, and ophthalmologic examinations are also recommended.
Carrier testing for at-risk relatives and prenatal testing for pregnancies at increased risk are possible if the disease-causing mutation in the family is known.
Diagnosis of the lipid storage disorders can be achieved through the use of several tests. These tests include clinical examination, biopsy, genetic testing, molecular analysis of cells or tissues, and enzyme assays. Certain forms of this disease can also be diagnosed through urine testing which will detect the stored material. Prenatal testing is also available to determine if the fetus will have the disease or is a carrier.
The more common and serious version of Canavan disease typically result in death or development of life-threatening conditions by the age of ten, though life expectancy is variable, and is highly dependent on specific circumstances. On the other hand, the milder variants of the disorder seem not to have any effect on lifespan.
In addition to genetic tests involving "PEX" genes, biochemical tests have proven highly effective for the diagnosis of infantile Refsum disease and other peroxisomal disorders. Typically, IRD patients show elevated very long chain fatty acids in their blood plasma. Cultured primarily skin fibroblasts obtained from patients show elevated very long chain fatty acids, impaired very long chain fatty acid beta-oxidation, phytanic acid alpha-oxidation, pristanic acid alpha-oxidation, and plasmalogen biosynthesis.
The disease may be diagnosed by its characteristic grouping of certain cells (multinucleated globoid cells), nerve demyelination and degeneration, and destruction of brain cells. Special stains for myelin (e.g.; luxol fast blue) may be used to aid diagnosis.
The degeneration of white matter, which shows the degeneration of myelin, can be seen in a basic MRI and used to diagnose leukodystrophies of all types. T-1 and T-2 weighted FLAIR images are the most useful. FLAIR stands for fluid-attenuated inversion recovery. Electrophysiological and other kinds of laboratory testing can also be done. In particular, nerve conduction velocity is looked at to distinguish between leukodystrophy and other demyelinating diseases, as well as to distinguish between individual leukodystrophies. For example, individuals with X-ALD have normal conduction velocities, while those with Krabbe disease or metachromatic leukodystrophy have abnormalities in their conduction velocities. Next generation multigene sequencing panels for undifferentiated leukodystrophy can now be offered for rapid molecular diagnosis after appropriate genetic counselling.
In addition to genetic tests involving the sequencing of "PEX" genes, biochemical tests have proven highly effective for the diagnosis of Zellweger syndrome and other peroxisomal disorders. Typically, Zellweger syndrome patients show elevated very long chain fatty acids in their blood plasma. Cultured primarily skin fibroblasts obtained from patients show elevated very long chain fatty acids, impaired very long chain fatty acid beta-oxidation, phytanic acid alpha-oxidation, pristanic acid alpha-oxidation, and plasmalogen biosynthesis.
There is currently no therapy or cure for MLD in late infantile patients displaying symptoms, or for juvenile and adult onset with advanced symptoms. These patients typically receive clinical treatment focused on pain and symptom management.
Pre-symptomatic late infantile MLD patients, as well as those with juvenile or adult MLD that are either presymptomatic or displaying mild symptoms, can consider bone marrow transplantation (including stem cell transplantation), which may slow down progression of the disease in the central nervous system. However, results in the peripheral nervous system have been less dramatic, and the long-term results of these therapies have been mixed. Recent success has involved stem cells being taken from the bone marrow of children with the disorder and infecting the cells with a retro-virus, replacing the stem cells' mutated gene with the repaired gene before re-injecting it back into the patient where they multiplied. The children by the age of five were all in good condition and going to kindergarten when normally by this age, children with the disease can not even speak.
Several therapy options are currently being investigated using clinical trials primarily in late infantile patients. These therapies include gene therapy, enzyme replacement therapy (ERT), substrate reduction therapy (SRT), and potentially enzyme enhancement therapy (EET).
A team of international researchers and foundations gathered in 2008 to form an international MLD Registry to create and manage a shared repository of knowledge, including the natural history of MLD. This consortium consisted of scientific, academic and industry resources. This registry never became operational.
Magnetic Resonance Imaging (MRI) in one family showed mild atrophy of the cranial vermis as well as a small pons. Different types of atrophy including cerebellar in four individuals and basal ganglia has been evident through MRIs.
Electroencephalography (EEG) in one patient showed epileptiformic activities in the frontal and frontotemporal areas as well as increased spike waves while the patient was sleeping. Another patient's EEG showed occipital rhythms in background activity that was abnormal, focal discharges over the temporal lobe, and multifocial epileptiform activity. Several patients showed a loss of normal background activity.
CMT can be diagnosed through symptoms, through measurement of the speed of nerve impulses (nerve conduction studies), through biopsy of the nerve, and through DNA testing. DNA testing can give a definitive diagnosis, but not all the genetic markers for CMT are known. CMT is first noticed when someone develops lower leg weakness, such as foot drop; or foot deformities, including hammertoes and high arches. But signs alone do not lead to diagnosis. Patients must be referred to a physician specialising in neurology or rehabilitation medicine. To see signs of muscle weakness, the neurologist asks patients to walk on their heels or to move part of their leg against an opposing force. To identify sensory loss, the neurologist tests for deep tendon reflexes, such as the knee jerk, which are reduced or absent in CMT. The doctor also asks about family history, because CMT is hereditary. The lack of family history does not rule out CMT, but helps rule out other causes of neuropathy, such as diabetes or exposure to certain chemicals or drugs.
In 2010, CMT was one of the first diseases where the genetic cause of a particular patient's disease was precisely determined by sequencing the whole genome of an affected individual. This was done by the scientists employed by the Charcot Marie Tooth Association (CMTA) Two mutations were identified in a gene, SH3TC2, known to cause CMT. Researchers then compared the affected patient's genome to the genomes of the patient's mother, father, and seven siblings with and without the disease. The mother and father each had one normal and one mutant copy of this gene, and had mild or no symptoms. The offspring that inherited two mutant genes presented fully with the disease.
The malabsorption resulting from lack of bile acid has resulted in elemental formula being suggested, which are low in fat with < 3% of calories derived from long chain triglycerides (LCT). However, reduced very long chain fatty acids (VLCFA) has not been shown to reduce blood VLCFA levels , likely because humans can endogenously produce most VLCFA. Plasma VLCFA levels are decreased when dietary VLCFA is reduced in conjunction with supplementation of Lorenzo’s oil (a 4:1 mixture of glyceryl trioleate and glyceryl trierucate) in X-ALD patients . Since docosahexaenoic acid (DHA) synthesis is impaired [59], DHA supplementation was recommended, but a placebo-controlled study has since showed no clinical efficacy . Due to the defective bile acid synthesis, fat soluble supplements of vitamins, A, D, E, and K are recommended.
There is no cure for Canavan disease, nor is there a standard course of treatment. Treatment is symptomatic and supportive. There is also an experimental treatment using lithium citrate. When a person has Canavan disease, his or her levels of N-acetyl aspartate are chronically elevated. The lithium citrate has proven in a rat genetic model of Canavan disease to be able to significantly decrease levels of N-acetyl aspartate. When tested on a human, the subject's condition reversed during a two-week wash-out period after withdrawal of lithium.
The investigation revealed both decreased N-acetyl aspartate levels in regions of the brain tested and magnetic resonance spectroscopic values that are more characteristic of normal development and myelination. This evidence suggests that a larger controlled trial of lithium may be warranted as supportive therapy for children with Canavan disease.
Experimental gene therapy trial results, published in 2002, used a healthy gene to take over for the defective one that causes Canavan disease.
In human trials, the results of which were published in 2012, this method appeared to improve the life of the patient without long-term adverse effects during a 5-year follow-up.
There is no pharmacological treatment for Roussy–Lévy syndrome.
Treatment options focus on palliative care and corrective therapy. Patients tend to benefit greatly from physical therapy (especially water therapy as it does not place excessive pressure on the muscles), while moderate activity is often recommended to maintain movement, flexibility, muscle strength and endurance.
Patients with foot deformities may benefit from corrective surgery, which, however, is usually a last resort. Most such surgeries include straightening and pinning the toes, lowering the arch, and sometimes, fusing the ankle joint to provide stability. Recovering from these surgeries is oftentimes long and difficult. Proper foot care including custom-made shoes and leg braces may minimize discomfort and increase function.
While no medicines are reported to treat the disorder, patients are advised to avoid certain medications as they may aggravate the symptoms.
Currently, there is no cure for infantile Refsum disease syndrome, nor is there a standard course of treatment. Infections should be guarded against to prevent such complications as pneumonia and respiratory distress. Other treatment is symptomatic and supportive. Patients show variable lifespans with some individuals surviving until adulthood and into old age.
CMT is a result of genetic mutations in a number of genes. Based on the affected gene, CMT can be categorized into types and subtypes.
To gain a better understanding of the disease, researchers have retrospectively reviewed medical records of probands and others who were assessed through clinical examinations or questionnaires. Blood samples are collected from the families of the probands for genetic testing. These family members are assessed using their standard medical history, on their progression of Parkinson's like symptoms (Unified Parkinson's Disease Rating Scale), and on their progression of cognitive impairment such as dementia (Folstein Test).
In terms of diagnosis of HNPP measuring nerve conduction velocity may give an indication of the presence of the disease.Other methods via which to ascertain the diagnosis of hereditary neuropathy with liability to pressure palsy are:
- Family history
- Genetic test
- Physical exam(lack of ankle reflex)
Currently, no research has shown a higher prevalence of most leukodsytrophy types in any one place around the world. There is, however, a higher prevalence of the Canavan disease in the Jewish population for unknown reasons. 1 in 40 individuals of Ashkenazi Jewish descent are carriers of Canavan disease. This estimates to roughly 2.5%. Additionally, due to an autosomal recessive inheritance patterns, there is no significant difference found between affected males and affected females for most types of leukodystrophy including, but not limited to, metachromatic leukodystrophy, Krabbe disease, Canavan disease, and Alexander disease. The one exception to this is any type of leukodystrophy carried on a sex chromosome, such as X-linked adrenoleukodystrophy, which is carried on the X-chromosome. Because of the inheritance pattern of X-linked diseases, males are more often affected by this type of leukodystrophy, although female carriers are often symptomatic, though not as severely so as males. To date, there have been no found cases of a leukodystrophy carried on the Y chromosome.
HDLS falls under the category of brain white matter diseases called leukoencephalopathies that are characterized by some degree of white matter dysfunction. HDLS has white matter lesions with abnormalities in myelin sheath around axons, where the causative influences are being continually explored based upon recent genetic findings. Studies by Sundal and colleagues from Sweden showed that a risk allele in Caucasians may be causative because cases identified have thus far been among large Caucasian families.
In infantile Krabbe disease, death usually occurs in early childhood. A 2011 study found 1, 2, 3 year survival rates of 60%, 26%, and 14%, respectively. A few survived for longer and one was still alive at age 13. Patients with late-onset Krabbe disease tend to have a slower progression of the disease and live significantly longer.
Detection of the disorder is possible with an organic acid analysis of the urine. Patients with SSADH deficiency will excrete high levels of GHB but this can be difficult to measure since GHB has high volatility and may be obscured on gas chromatography or mass spectrometry studies by a high urea peak. Other GABA metabolites can also be identified in urine such as glycine. Finally, succinic semialdehyde dehydrogenase levels can be measured in cultured leukocytes of the patient. This occurs due to the accumulation of 4,5-dihydroxyhexanoic acid which is normally undetectable in mammalian tissues but is characteristic of SSADH deficiency. This agent can eventually compromise the pathways of fatty acid, glycine, and pyruvate metabolism, and then become detectable in patients' leukocytes. Such enzyme levels can also be compared to non-affected parents and siblings.