Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Wobblers is definitively diagnosed by x-ray, nuclear scintography or bone scan. X-rays will show channel widening or filling the easiest and are often most cost effective to horse owners. X-rays will also show any structural anomaly, arthritis, facet remodeling, or bone spurs present. Preliminary diagnosis can be made by ultrasound but x-rays are needed to measure the true depth of facet involvement. For extent of damage to associated structures, veterinarians may opt to have the horse undergo a bone scan or nuclear scintography.
A retrolisthesis is a posterior displacement of one vertebral body with respect to the subjacent vertebra to a degree less than a luxation (dislocation). Retrolistheses are most easily diagnosed on lateral x-ray views of the spine. Views, where care has been taken to expose for a true lateral view without any rotation, offer the best diagnostic quality.
Retrolistheses are found most prominently in the cervical spine and lumbar region but can also be seen in the thoracic area.
Classification by degree of the slippage, as measured as percentage of the width of the vertebral body:
- Grade I: 0-25%
- Grade II: 25- 50%
- Grade III: 50-75%
- Grade IV: 75-100%
- Grade V: greater than 100%
There are multiple techniques used in the diagnosis of spondylosis, these are;
- Cervical Compression Test, a variant of Spurling's test, is performed by laterally flexing the patient's head and placing downward pressure on it. Neck or shoulder pain on the ipsilateral side (i.e. the side to which the head is flexed) indicates a positive result for this test. However it should be noted that a positive test result is not necessarily a positive result for spondylosis and as such additional testing is required.
- Lhermitte sign: feeling of electrical shock with patient neck flexion
- Reduced range of motion of the neck, the most frequent objective finding on physical examination
- MRI and CT scans are helpful for pain diagnosis but generally are not definitive and must be considered together with physical examinations and history.
It has been proposed that a vertebral subluxation can negatively affect general health by altering the neurological communication between the brain, spinal cord and peripheral nervous system. Although individuals may not always be symptomatic, straight chiropractors believe that the presence of vertebral subluxation is in itself justification for correction via spinal adjustment.
Chiropractic treatment of vertebral subluxation focuses on delivering a chiropractic adjustment which is a high velocity low amplitude (HVLA) thrust to the dysfunctional spinal segments to help correct the chiropractic subluxation complex. Spinal adjustment is the primary procedure used by chiropractors in the adjustment. Adjustment/manipulation has been shown to help with low back pain, neck pain and tension type headaches, but further studies are inconclusive on the use of spinal manipulation outside the treatment of neuromusculoskeletal disorders.
Commonly known as a CT Scan or CAT scan, this form of imaging is very similar to x-ray technology but produces many more images than an x-ray does. The multiple images produce cross-sectional views not possible with an x-ray. This allows a physician or radiologist to examine the images from many more angles than an x-ray allows. For this reason the CT scan is much more accurate in detecting spondylolysis than an x-ray. Bone scintigraphy combined with CT scan is considered the gold standard which means that it is best at detecting spondylolysis.
Historically, the detection of spinal misalignments (subluxations) by the chiropractic profession has relied on X-ray findings and physical examination. At least 2 of the following 4 physical signs and/or symptoms must be documented to qualify for reimbursement:
- Pain and tenderness
- Asymmetry/misalignment
- Range of motion abnormality
- Tissue/tone changes
Kyphosis can be graded in severity by the Cobb angle. Also, "sagittal balance" can be measured. The sagittal balance is the horizontal distance between the center of C7 and the superior-posterior border of the endplate of S1 on a lateral radiograph. An offset of more than 2.5 cm anteriorly or posteriorly is considered to be abnormal.
MRI is a newer technique used to diagnose spondylolysis and is favorable for a few reasons. The MRI is much more accurate than the x-ray and also does not use radiation. The MRI uses powerful magnets and radio frequencies to produce very detailed images of many different densities of tissue including bone and soft tissues.
Adult presentation in diastematomyelia is unusual. With modern imaging techniques, various types of spinal dysraphism are being diagnosed in adults with increasing frequency. The commonest location of the lesion is at first to third lumbar vertebrae. Lumbosacral adult diastematomyelia is even rarer. Bony malformations and dysplasias are generally recognized on plain x-rays. MRI scanning is often the first choice of screening and diagnosis. MRI generally give adequate analysis of the spinal cord deformities although it has some limitations in giving detailed bone anatomy. Combined myelographic and post-myelographic CT scan is the most effective diagnostic tool in demonstrating the detailed bone, intradural and extradural pathological anatomy of the affected and adjacent spinal canal levels and of the bony spur.
Prenatal ultrasound diagnosis of this anomaly is usually possible in the early to mid third-trimester. An extra posterior echogenic focus between the fetal spinal laminae is seen with splaying of the posterior elements, thus allowing for early surgical intervention and have a favorable prognosis. Prenate ultrasound could also detect whether the diastematomyelia is isolated, with the skin intact or association with any serious neural tube defects. Progressive neurological lesions may result from the "tethering cord syndrome" (fixation of the spinal cord) by the diastematomyelia phenomenon or any of the associated disorders such as myelodysplasia, dysraphia of the spinal cord.
Because there are various causes for back injuries, prevention must be comprehensive. Back injuries are predominant in manual labor so the majority low back pain prevention methods have been applied primarily toward biomechanics Prevention must come from multiple sources such as education, proper body mechanics, and physical fitness.
Diagnosis should be based on the clinical and radiographic findings and a genetic analysis can be assessed.
Different features of the dysostosis are significant. Radiological imaging helps confirm the diagnosis. During gestation (pregnancy), clavicular size can be calculated using available nomograms. Wormian bones can sometimes be observed in the skull.
Diagnosis of CCD spectrum disorder is established in an individual with typical clinical and radiographic findings and/or by the identification of a heterozygous pathogenic variant in RUNX2 (CBFA1).
The straight leg raise may be positive, as this finding has low specificity; however, it has high sensitivity. Thus the finding of a negative SLR sign is important in helping to "rule out" the possibility of a lower lumbar disc herniation. A variation is to lift the leg while the patient is sitting. However, this reduces the sensitivity of the test.
A combination of medical tests are used to diagnosis kniest dysplasia. These tests can include:
- Computer Tomography Scan(CT scan) - This test uses multiple images taken at different angles to produce a cross-sectional image of the body.
- Magnetic Resonance Imaging (MRI) - This technique proves detailed images of the body by using magnetic fields and radio waves.
- EOS Imaging - EOS imaging provides information on how musculoskeletal system interacts with the joints. The 3D image is scanned while the patient is standing and allows the physician to view the natural, weight-bearing posture.
- X-rays - X-ray images will allow the physician to have a closer look on whether or not the bones are growing abnormally.
The images taken will help to identify any bone anomalies. Two key features to look for in a patient with kniest dysplasia is the presence of dumb-bell shaped femur bones and coronal clefts in the vertebrae. Other features to look for include:
- Platyspondyly (flat vertebral bodies)
- Kyphoscoliosis (abnormal rounding of the back and lateral curvature of the spine)
- Abnormal growth of epiphyses, metaphyses, and diaphysis
- Short tubular bones
- Narrowed joint spaces
Genetic Testing - A genetic sample may be taken in order to closely look at the patient's DNA. Finding an error in the COL2A1 gene will help identify the condition as a type II chondroldysplasia.
The heterogeneity of the Klippel–Feil syndrome has made it difficult to outline the diagnosis as well as the prognosis classes for this disease. Because of this, it has complicated the exact explanation of the genetic cause of the syndrome.
The prognosis for most individuals with KFS is good if the disorder is treated early on and appropriately. Activities that can injure the neck should be avoided, as it may contribute to further damage. Other diseases associated with the syndrome can be fatal if not treated, or if found too late to be treatable.
Facet syndrome can typically be diagnosed through a physical examination, MRI, x-rays and/or a diagnostic block into the suspected joint.
Facet syndrome has no specific code in ICD-10. It can be diagnosed as “other” in M53.8 – other specified dorsopathies.
The risk of serious complications from spinal fusion surgery for kyphosis is estimated to be 5%, similar to the risks of surgery for scoliosis. Possible complications include inflammation of the soft tissue or deep inflammatory processes, breathing impairments, bleeding, and nerve injuries. According to the latest evidence, the actual rate of complications may be substantially higher. Even among those who do not suffer from serious complications, 5% of patients require reoperation within five years of the procedure, and in general it is not yet clear what one would expect from spine surgery during the long-term. Taking into account that signs and symptoms of spinal deformity cannot be changed by surgical intervention, surgery remains to be a cosmetic indication. Unfortunately, the cosmetic effects of surgery are not necessarily stable.
Joint stability is easily evaluated by the use of flexion and extension lateral x-ray views of the spine.
A summary of part of the DRE tables () give a guide as to the implications of the joint instability. If either translation or angular change is determined from flexion to extension to the degree shown in the table below, then Category IV instability is present. This would mean that 20% to 23% “whole person impairment” is present at each level where this if found. In calculating the total whole person impairment it is NOT merely the case of adding the percentages. This calculation is best left to your health care provider. See also Joint stability.
Translation is a gliding motion where one bone of a joint glides over its neighbour.
Surgery
Surgical intervention is warranted in patients who present with new onset neurological signs and symptoms or have a history of progressive neurological manifestations which can be related to this abnormality. The surgical procedure required for the effective treatment of diastematomyelia includes decompression (surgery) of neural elements and removal of bony spur. This may be accomplished with or without resection and repair of the duplicated dural sacs. Resection and repair of the duplicated dural sacs is preferred since the dural abnormality may partly contribute to the "tethering" process responsible for the symptoms of this condition.
Post-myelographic CT scanning provides individualized detailed maps that enable surgical treatment of cervical diastematomyelia, first performed in 1983.
Observation
Asymptomatic patients do not require surgical treatment. These patients should have regular neurological examinations since it is known that the condition can deteriorate. If any progression is identified, then a resection should be performed.
Treatment for Klippel–Feil syndrome is symptomatic and may include surgery to relieve cervical or craniocervical instability and constriction of the spinal cord, and to correct scoliosis.
Failing non-surgical therapies, spinal surgery may provide relief. Adjacent segment disease and scoliosis are two examples of common symptoms associated with Klippel–Feil syndrome, and they may be treated surgically. The three categories treated for types of spinal cord deficiencies are massive fusion of the cervical spine (Type I), the fusion of 1 or 2 vertebrae (Type II), and the presence of thoracic and lumbar spine anomalies in association with type I or type II Klippel–Feil syndrome (Type III).
Adjacent segment disease can be addressed by performing cervical disc arthroplasty using a device such as the Bryan cervical disc prosthesis.
The option of the surgery is to maintain range of motion and attenuate the rate of adjacent segment disease advancement without fusion.
Another type of arthroplasty that is becoming an alternate choice to spinal fusion is Total Disc Replacement. Total disc replacement objective is to reduce pain or eradicate it.
Spinal fusion is commonly used to correct spinal deformities such as scoliosis. Arthrodesis is the last resort in pain relieving procedures, usually when arthroplasties fail.
Several indirect measurements on CT can be used to assess ligamentous integrity at the craniocervical junction. The Wackenheim line, a straight line extending along the posterior margin of the clivus through the dens, normally intersects the posterior margin of the tip of the dens on plain film. The basion to axion interval, or BAI, is also used, which is determined by measuring the distance between an imaginary vertical line at the anterior skull base, or basion, at the foramen magnum, and the axis of the cervical spine along its posterior margin, which should measure 12 mm, an assessment more reliable on radiograph than CT. The distance between the atlas and the occipital condyles, the atlanto-occipital interval (AOI), should measure less than 4 mm, and is better assessed on coronal images.
The distances between the dens and surrounding structures are also key features that can suggest the diagnosis, with the normal distance between the dens and basion (BDI) measuring less than 9 mm on CT, and the distance between the dens and atlas (ADI) measuring less than 3 mm on CT, although this can be increased in cases of rheumatoid arthritis due to pannus formation. Lastly, the atlanto-occipital interval can be measured.
The Powers ratio was formerly used, which was the tip of the basion to the spinolaminar line, divided by the distance from the tip of the opisthion to the midpoint of the posterior aspect of the anterior arch of C1. It is no longer recommended due to low sensitivity and difficulty identifying landmarks. It also will miss vertical or posterior displacement of the cervical spine.
DISH is diagnosed by findings on x-ray studies. Radiographs of the spine will show abnormal bone formation (ossification) along the anterior spinal ligament. The disc spaces, facet and sacroiliac joints remain unaffected. Diagnosis requires confluent ossification of at least four contiguous vertebral bodies. Classically, advanced disease may have "melted candle wax" appearance along the spine on radiographic studies. In some cases, DISH may be manifested as ossification of enthesis in other parts of the skeleton.
The calcification and ossification is most common on the right side of the spine. In people with dextrocardia and situs inversus this calcification occurs on the left side, which confirms the role of the descending thoracic aorta in preventing the physical manifestations of DISH on one side of the spine.
Treatment involves fixation of the cervical spine to the skull base, or occipitocervical fusion, using paramedian rods and transpedicular screws with cross-links for stabilization. The patient is subsequently unable to rotate their head in the horizontal plane. If there is obstructive hydrocephalus, a pseudomeningocele can form, which is decompressed at the time of surgery.
Schmorl's nodes can be detected with x-ray, although they can be imaged better by CT or MRI. They are considered to be vertical disc herniations through the cartilaginous vertebral body endplates. Schmorl's nodes can sometimes be seen radiographically, however they are more often seen on MRI, even when not visible on plain film x-ray. They may or may not be symptomatic, and their etiological significance for back pain is controversial. In a study in Spine by Hamanishi, et al., Schmorl's nodes were observed on MRI in 19% of 400 patients with back pain, and in only 9% of an asymptomatic control group. The authors concluded that Schmorl's nodes are areas of "vertical disc herniation" through areas of weakness in the endplate.