Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Measurement and diagnosis of lumbar hyperlordosis can be difficult. Obliteration of vertebral end-plate landmarks by interbody fusion may make the traditional measurement of segmental lumbar lordosis more difficult. Because the L4-L5 and L5-S1 levels are most commonly involved in fusion procedures, or arthrodesis, and contribute to normal lumbar lordosis, it is helpful to identify a reproducible and accurate means of measuring segmental lordosis at these levels.
A visible sign of hyperlordosis is an abnormally large arch of the lower back and the person appears to be puffing out his or her stomach and buttocks. Precise diagnosis is done by looking at a complete medical history, physical examination and other tests of the patient. X-rays are used to measure the lumbar curvature, bone scans are conducted in order to rule out possible fractures and infections, magnetic resonance imaging (MRI) is used to eliminate the possibility of spinal cord or nerve abnormalities, and computed tomography scans (CT scans) are used to get a more detailed image of the bones, muscles and organs of the lumbar region.
Kyphosis can be graded in severity by the Cobb angle. Also, "sagittal balance" can be measured. The sagittal balance is the horizontal distance between the center of C7 and the superior-posterior border of the endplate of S1 on a lateral radiograph. An offset of more than 2.5 cm anteriorly or posteriorly is considered to be abnormal.
Commonly known as a CT Scan or CAT scan, this form of imaging is very similar to x-ray technology but produces many more images than an x-ray does. The multiple images produce cross-sectional views not possible with an x-ray. This allows a physician or radiologist to examine the images from many more angles than an x-ray allows. For this reason the CT scan is much more accurate in detecting spondylolysis than an x-ray. Bone scintigraphy combined with CT scan is considered the gold standard which means that it is best at detecting spondylolysis.
A retrolisthesis is a posterior displacement of one vertebral body with respect to the subjacent vertebra to a degree less than a luxation (dislocation). Retrolistheses are most easily diagnosed on lateral x-ray views of the spine. Views, where care has been taken to expose for a true lateral view without any rotation, offer the best diagnostic quality.
Retrolistheses are found most prominently in the cervical spine and lumbar region but can also be seen in the thoracic area.
There are several imaging techniques used to diagnose spondylolysis. Common imaging techniques include X-ray, MRI, Bone Scintigraphy (Bone Scan), and Computed Tomography (CT Scan). Qualified health care practitioners are also able to conduct clinical tests such as the one-legged hyperextension test to diagnose active spondylolysis.
There are multiple techniques used in the diagnosis of spondylosis, these are;
- Cervical Compression Test, a variant of Spurling's test, is performed by laterally flexing the patient's head and placing downward pressure on it. Neck or shoulder pain on the ipsilateral side (i.e. the side to which the head is flexed) indicates a positive result for this test. However it should be noted that a positive test result is not necessarily a positive result for spondylosis and as such additional testing is required.
- Lhermitte sign: feeling of electrical shock with patient neck flexion
- Reduced range of motion of the neck, the most frequent objective finding on physical examination
- MRI and CT scans are helpful for pain diagnosis but generally are not definitive and must be considered together with physical examinations and history.
Wobblers is definitively diagnosed by x-ray, nuclear scintography or bone scan. X-rays will show channel widening or filling the easiest and are often most cost effective to horse owners. X-rays will also show any structural anomaly, arthritis, facet remodeling, or bone spurs present. Preliminary diagnosis can be made by ultrasound but x-rays are needed to measure the true depth of facet involvement. For extent of damage to associated structures, veterinarians may opt to have the horse undergo a bone scan or nuclear scintography.
The risk of serious complications from spinal fusion surgery for kyphosis is estimated to be 5%, similar to the risks of surgery for scoliosis. Possible complications include inflammation of the soft tissue or deep inflammatory processes, breathing impairments, bleeding, and nerve injuries. According to the latest evidence, the actual rate of complications may be substantially higher. Even among those who do not suffer from serious complications, 5% of patients require reoperation within five years of the procedure, and in general it is not yet clear what one would expect from spine surgery during the long-term. Taking into account that signs and symptoms of spinal deformity cannot be changed by surgical intervention, surgery remains to be a cosmetic indication. Unfortunately, the cosmetic effects of surgery are not necessarily stable.
The indication to surgically stabilize a cervical fracture can be estimated from the "Subaxial Injury Classification" (SLIC). In this system, a score of 3 or less indicates that conservative management is appropriate, a score of 5 or more indicates that surgery is needed, and a score of 4 is equivocal. The score is the sum from 3 different categories: morphology, discs and ligaments, and neurology:
Classification by degree of the slippage, as measured as percentage of the width of the vertebral body:
- Grade I: 0-25%
- Grade II: 25- 50%
- Grade III: 50-75%
- Grade IV: 75-100%
- Grade V: greater than 100%
Because there are various causes for back injuries, prevention must be comprehensive. Back injuries are predominant in manual labor so the majority low back pain prevention methods have been applied primarily toward biomechanics Prevention must come from multiple sources such as education, proper body mechanics, and physical fitness.
Severe pain will usually be present at the point of injury. Pressure on a nerve may also cause pain from the neck down the shoulders and/or arms. Bruising and swelling may be present at the back of the neck. A neurological exam will be performed to assess for spinal cord injury. X-rays will be ordered to determine the severity and location of the fracture. CT (computed tomography) scans may be ordered to assess for gross abnormalities not visible by regular X-ray. MRI (magnetic resonance imaging) tests may be ordered to provide high resolution images of soft tissue and determine whether there has been damage to the spinal cord, although such damage is usually obvious in the conscious patient because of the immediate functional consequences of numbness and paralysis in much of the body.
It is also common for imaging (either a plain film X-ray or CT scan) to be completed when assessing a cervical injury. This is the most common way to diagnose the location and severity of the fracture. To decrease the use C-spine scans yielding negative findings for fracture, thus unnecessarily exposing people to radiation and increase time in the hospital and cost of the visit, multiple clinical decision support rules have been developed to help clinicians weigh the option to scan a patient with a neck injury. Among these are the Canadian C-spine rule and the NEXUS criteria for C-Spine imaging, which both help make these decisions from easily obtained information. Both rules are widely used in emergency departments and by paramedics.
Joint stability is easily evaluated by the use of flexion and extension lateral x-ray views of the spine.
A summary of part of the DRE tables () give a guide as to the implications of the joint instability. If either translation or angular change is determined from flexion to extension to the degree shown in the table below, then Category IV instability is present. This would mean that 20% to 23% “whole person impairment” is present at each level where this if found. In calculating the total whole person impairment it is NOT merely the case of adding the percentages. This calculation is best left to your health care provider. See also Joint stability.
Translation is a gliding motion where one bone of a joint glides over its neighbour.
The straight leg raise may be positive, as this finding has low specificity; however, it has high sensitivity. Thus the finding of a negative SLR sign is important in helping to "rule out" the possibility of a lower lumbar disc herniation. A variation is to lift the leg while the patient is sitting. However, this reduces the sensitivity of the test.
Since lumbar hyperlordosis is usually caused by habitual poor posture, rather than by an inherent physical defect like scoliosis or hyperkyphosis, it can be reversed. This can be accomplished by stretching the lower back, hip-flexors, hamstring muscles, and strengthening abdominal muscles.Dancers should ensure that they don't strain themselves during dance rehearsals and performances. To help with lifts, the concept of isometric contraction, during which the length of muscle remains the same during contraction, is important for stability and posture.
Lumbar hyperlordosis may be treated by strengthening the hip extensors on the back of the thighs, and by stretching the hip flexors on the front of the thighs.
Only the muscles on the front and on the back of the thighs can rotate the pelvis forward or backward while in a standing position because they can discharge the force on the ground through the legs and feet. Abdominal muscles and erector spinae can't discharge force on an anchor point while standing, unless one is holding his hands somewhere, hence their function will be to flex or extend the torso, not the hip.
Back hyper-extensions on a Roman chair or inflatable ball will strengthen all the posterior chain and will treat hyperlordosis. So too will stiff legged deadlifts and supine hip lifts and any other similar movement strengthening the posterior chain "without involving the hip flexors" in the front of the thighs. Abdominal exercises could be avoided altogether if they stimulate too much the psoas and the other hip flexors.
Controversy regarding the degree to which manipulative therapy can help a patient still exists. If therapeutic measures reduce symptoms, but not the measurable degree of lordotic curvature, this could be viewed as a successful outcome of treatment, though based solely on subjective data. The presence of measurable abnormality does not automatically equate with a level of reported symptoms.
A diagnosis can be made using clinical examination, laryngoscope examination, and/or radiographic studies.
The diagnosis process might include a physician who tests that the movement, strength, and sensation of the arms and legs are normal. The spine is examined for its range of motion and any pain that may arise from movement. Blood work might be utilized in addition to radiographic imaging in order to identify spinal cord diseases. Basic imaging techniques, which includes x-ray imaging, can reveal degenerative changes of the spine, while more advanced imaging techniques, such as computed tomography (CT) and magnetic resonance imaging (MRI), can allow visualization of more detailed anatomical structures, including that of the associated nerves and muscles. The most detailed and specific testing is electrodiagnostic, which helps to uncover whether the appropriate electrical signals are being sent to each muscle from the correlate nerves. This aids in localizing a problem's source. There are risks to be considered with any diagnostic testing. For example, in the case of CT imaging, there is obvious benefit over x-ray in that a more thorough picture of the anatomy is exposed, but there is a trade-off in that CT has around a 10-fold increased radiation exposure; alternatively, while MRI provides highly detailed imaging of the anatomy with the benefit of no radiation exposure to the patient, the high cost of this test must be taken into account.
Several indirect measurements on CT can be used to assess ligamentous integrity at the craniocervical junction. The Wackenheim line, a straight line extending along the posterior margin of the clivus through the dens, normally intersects the posterior margin of the tip of the dens on plain film. The basion to axion interval, or BAI, is also used, which is determined by measuring the distance between an imaginary vertical line at the anterior skull base, or basion, at the foramen magnum, and the axis of the cervical spine along its posterior margin, which should measure 12 mm, an assessment more reliable on radiograph than CT. The distance between the atlas and the occipital condyles, the atlanto-occipital interval (AOI), should measure less than 4 mm, and is better assessed on coronal images.
The distances between the dens and surrounding structures are also key features that can suggest the diagnosis, with the normal distance between the dens and basion (BDI) measuring less than 9 mm on CT, and the distance between the dens and atlas (ADI) measuring less than 3 mm on CT, although this can be increased in cases of rheumatoid arthritis due to pannus formation. Lastly, the atlanto-occipital interval can be measured.
The Powers ratio was formerly used, which was the tip of the basion to the spinolaminar line, divided by the distance from the tip of the opisthion to the midpoint of the posterior aspect of the anterior arch of C1. It is no longer recommended due to low sensitivity and difficulty identifying landmarks. It also will miss vertical or posterior displacement of the cervical spine.
Imaging diagnosis conventionally begins with plain film radiography. Generally, AP radiographs of the shoulder with the arm in internal rotation offer the best yield while axillary views and AP radiographs with external rotation tend to obscure the defect. However, pain and tenderness in the injured joint make appropriate positioning difficult and in a recent study of plain film x-ray for Hill–Sachs lesions, the sensitivity was only about 20%. i.e. the finding was not visible on plain film x-ray about 80% of the time.
By contrast, studies have shown the value of ultrasonography in diagnosing Hill–Sachs lesions. In a population with recurrent dislocation using findings at surgery as the gold standard, a sensitivity of 96% was demonstrated. In a second study of patients with continuing shoulder instability after trauma, and using double contrast CT as a gold standard, a sensitivity of over 95% was demonstrated for ultrasound. It should be borne in mind that in both those studies, patients were having continuing problems after initial injury, and therefore the presence of a Hill–Sachs lesion was more likely. Nevertheless, ultrasonography, which is noninvasive and free from radiation, offers important advantages.
MRI has also been shown to be highly reliable for the diagnosis of Hill-Sachs (and Bankart) lesions. One study used challenging methodology. First of all, it applied to those patients with a single, or first time, dislocation. Such lesions were likely to be smaller and therefore more difficult to detect. Second, two radiologists, who were blinded to the surgical outcome, reviewed the MRI findings, while two orthopedic surgeons, who were blinded to the MRI findings, reviewed videotapes of the arthroscopic procedures. Coefficiency of agreement was then calculated for the MRI and arthroscopic findings and there was total agreement ( kappa = 1.0) for Hill-Sachs and Bankart lesions.
In 1977, Dyck and Doyle reported on the bicycle test, a simple procedure in which the patient is asked to pedal on a stationary bicycle. If the symptoms are caused by peripheral vascular disease, the patient will experience claudication, a sensation of not getting enough blood to the legs; if the symptoms are caused by lumbar stenosis, symptoms will be relieved when the patient is leaning forward while bicycling. Although diagnostic progress has been made with newer technical advances, the bicycle test remains an inexpensive and easy way to distinguish between claudication caused by vascular disease and spinal stenosis.
The detection of spinal stenosis in the cervical, thoracic or lumbar spine confirms only the anatomic presence of a stenotic condition. This may or may not correlate with the diagnosis of spinal stenosis which is based on clinical findings of radiculopathy, neurogenic claudication, weakness, bowel and bladder dysfunction, spasticity, motor weakness, hyperreflexia and muscular atrophy. These findings, taken from the history and physical examination of the patient (along with the anatomic demonstration of stenosis with an MRI or CT scan), establish the diagnosis.
Treatment is usually conservative in nature. Patient education on lifestyle modifications, chiropractic, nonsteroidal anti-inflammatory drugs (NSAIDs), physical therapy, and osteopathic care are common forms of manual care that help manage such conditions. Other alternative therapies such as massage, trigger-point therapy, yoga and acupuncture may be of limited benefit. Surgery is occasionally performed.
Many of the treatments for cervical spondylosis have not been subjected to rigorous, controlled trials. Surgery is advocated for cervical radiculopathy in patients who have intractable pain, progressive symptoms, or weakness that fails to improve with conservative therapy. Surgical indications for cervical spondylosis with myelopathy (CSM) remain somewhat controversial, but "most clinicians recommend operative therapy over conservative therapy for moderate-to-severe myelopathy" (Baron, M.E.).
Physical therapy may be effective for restoring range of motion, flexibility and core strengthening. Decompressive therapies (i.e. manual mobilization, mechanical traction) may also help alleviate pain. However, physical therapy and osteopathy cannot "cure" the degeneration, and some people view that strong compliance with postural modification is necessary to realize maximum benefit from decompression, adjustments and flexibility rehabilitation.
It has been argued, however, that the cause of spondylosis is simply old age, and that posture modification treatment is often practiced by those who have a financial interest (such as Worker's Compensation) in proving that it is caused by work conditions and poor physical habits. Understanding anatomy is the key to conservative management of spondylosis.
The decisions involved in the repair of the Hill–Sachs lesion are complex. First, it is not repaired simply because of its existence, but because of its association with continuing symptoms and instability. This may be of greatest importance in the under-25-year-old and in the athlete involved in throwing activities. The Hill-Sachs role in continuing symptoms, in turn, may be related to its size and large lesions, particularly if involving greater than 20% of the articular surface, may impinge on the glenoid fossa (engage), promoting further episodes of instability or even dislocation. Also, it is a fracture, and associated bony lesions or fractures may coexist in the glenoid, such as the so-called bony Bankart lesion. Consequently, its operative treatment may include some form of bony augmentation, such as the Latarjet or similar procedure. Finally, there is no guarantee that associated non-bony lesions, such as a Bankart lesion, SLAP tear, or biceps tendon injury, may not be present and require intervention.
Scoliosis is well established and even evaluated at an early age. It is typically quantified using the standardized Cobb angle method. This method consists of measuring the degree of deformity by the angle between two successive vertebrae. The Cobb method was accepted by the Scoliosis Research Society (SRS) in 1966. It serves as the standard method for quantification of scoliosis deformities. Sagittal plane posture aberrations such as cervical and lumbar lordosis and thoracic kyphosis have yet to be quantified due to considerable inter-individual variability in normal sagittal curvature. The Cobb method was also one of the first techniques used to quantify sagittal deformity. As a 2D measurement technique it has limitations and new techniques are being proposed for measurement of these curvatures. Most recently, 3D imaging techniques using computed tomography (CT) and magnetic resonance (MR) have been attempted. These techniques are promising but lack the reliability and validity necessary to be used as a reference for clinical purposes.
Posture assessment has also become quite popular in many practical environments like the personal training and sports conditioning settings. The need for reliable methods of posture assessment as a screening tool is warranted. Current available programs such as those through the National Posture Institute (NPI) and Posture Print are recommended for the practical setting but cost close to $1000 and are clearly a profiteering scam by individuals not at all concerned with human well-being.
Chronic deviations from neutral spine lead to improper posture, increased stress on the back and causes discomfort and damage. People who sit for long hours on the job are susceptible to a number of misalignments.
"Neutral spine" is ideally maintained while sitting, standing, and sleeping.
The diagnosis of spinal stenosis involves a complete evaluation of the spine. The process usually begins with a medical history and physical examination. X-ray and MRI scans are typically used to determine the extent and location of the nerve compression.