Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
A diagnosis can only be definitively made after genetic testing to look for a mutation in the "DOCK8" gene. However, it can be suspected with a high IgE level and eosinophilia. Other suggestive laboratory findings include decreased numbers of B cells, T cells, and NK cells; and hypergammaglobulinemia. It can be distinguished from autosomal dominant hyper-IgE (STAT3 deficiency) because people with DOCK8 deficiency have low levels of IgM and an impaired secondary immune response. IgG and IgA levels are usually normal to high. It can be distinguished from the similar X-linked Wiskott–Aldrich syndrome by the presence of thrombocytopenia and the consequent bloody diarrhea, as well as its pattern of inheritance. WHIM syndrome, caused by a mutation in CXCR4, is associated with similar chronic cutaneous viral infections.
When suspected, the diagnosis can be confirmed by laboratory measurement of IgA level in the blood. SigAD is an IgA level < 7 mg/dL with normal IgG and IgM levels (reference range 70–400 mg/dl for adults; children somewhat less).
Patients show markedly low immunoglobulin levels of IgG, IgA, and IgM.
Current research suggests that nearly 8% of the population has at least partial DPD deficiency. A diagnostics determination test for DPD deficiency is available and it is expected that with a potential 500,000 people in North America using 5-FU this form of testing will increase. The whole genetic events affecting the DPYD gene and possibly impacting on its function are far from being elucidated, and epigenetic regulations could probably play a major role in DPD deficiency. It seems that the actual incidence of DPD deficiency remains to be understood because it could depend on the very technique used to detect it. Screening for genetic polymorphisms affecting the "DPYD" gene usually identify less than 5% of patients bearing critical mutations, whereas functional studies suggest that up to 20% of patients could actually show various levels of DPD deficiency.
Women could be more at risk than men. It is more common among African-Americans than it is among Caucasians.
Children with DOCK8 deficiency do not tend to live long; sepsis is a common cause of death at a young age. CNS and vascular complications are other common causes of death.
The basic tests performed when an immunodeficiency is suspected should include a full blood count (including accurate lymphocyte and granulocyte counts) and immunoglobulin levels (the three most important types of antibodies: IgG, IgA and IgM).
Other tests are performed depending on the suspected disorder:
- Quantification of the different types of mononuclear cells in the blood (i.e. lymphocytes and monocytes): different groups of T lymphocytes (dependent on their cell surface markers, e.g. CD4+, CD8+, CD3+, TCRαβ and TCRγδ), groups of B lymphocytes (CD19, CD20, CD21 and Immunoglobulin), natural killer cells and monocytes (CD15+), as well as activation markers (HLA-DR, CD25, CD80 (B cells).
- Tests for T cell function: skin tests for delayed-type hypersensitivity, cell responses to mitogens and allogeneic cells, cytokine production by cells
- Tests for B cell function: antibodies to routine immunisations and commonly acquired infections, quantification of IgG subclasses
- Tests for phagocyte function: reduction of nitro blue tetrazolium chloride, assays of chemotaxis, bactericidal activity.
Due to the rarity of many primary immunodeficiencies, many of the above tests are highly specialised and tend to be performed in research laboratories.
Criteria for diagnosis were agreed in 1999. For instance, an antibody deficiency can be diagnosed in the presence of low immunoglobulins, recurrent infections and failure of the development of antibodies on exposure to antigens. The 1999 criteria also distinguish between "definitive", "probable" and "possible" in the diagnosis of primary immunodeficiency. "Definitive" diagnosis is made when it is likely that in 20 years, the patient has a >98% chance of the same diagnosis being made; this level of diagnosis is achievable with the detection of a genetic mutation or very specific circumstantial abnormalities. "Probable" diagnosis is made when no genetic diagnosis can be made, but the patient has all other characteristics of a particular disease; the chance of the same diagnosis being made 20 years later is estimated to be 85-97%. Finally, a "possible" diagnosis is made when the patient has only some of the characteristics of a disease are present, but not all.
PNP-deficiency is extremely rare. Only 33 patients with the disorder in the United States have been documented. In the United Kingdom only one child has been diagnosed with this disorder.
Direct sequence analysis of genomic DNA from blood can be used to perform a mutation analysis for the TALDO1 gene responsible for the Transaldolase enzyme.
Biotinidase deficiency can be found by genetic testing. This is often done at birth as part of newborn screening in several states throughout the United States. Results are found through testing a small amount of blood gathered through a heel prick of the infant. As not all states require that this test be done, it is often skipped in those where such testing is not required. Biotinidase deficiency can also be found by sequencing the "BTD" gene, particularly in those with a family history or known familial gene mutation.
Prognosis is excellent, although there is an association with autoimmune disease. Of note, selective IgA deficiency can complicate the diagnosis of one such condition, celiac disease, as the deficiency masks the high levels of certain IgA antibodies usually seen in celiac disease.
As opposed to the related condition CVID, selective IgA deficiency is not associated with an increased risk of cancer.
Patients with Selective IgA deficiency are at risk of anaphylaxis from blood transfusions. These patients should receive IgA free containing blood products and ideally blood from IgA-deficient donors.
Among the diagnostic tests that can be done in determining if an individual has complement deficiencies is:
- CH50 measurement
- Immunochemical methods/test
- C3 deficiency screening
- Mannose-binding lectin (lab study)
- Plasma levels/regulatory proteins (lab study)
There is a deficiency of malate in patients because fumarase enzyme can't convert fumarate into it therefore treatment is with oral malic acid which will allow the krebs cycle to continue, and eventually make ATP.
A small number of genetic variants have been repeatedly associated with DPD deficiency, such as IVS14+1G>A mutation in intron 14 coupled with exon 14 deletion (a.k.a. DPYD*2A), 496A>G in exon 6; 2846A>T in exon 22 and T1679G (a.k.a. DPYD*13) in exon 13. However, testing patients for these allelic variants usually show high specificity (i.e., bearing the mutation means that severe toxicity will occur indeed)but very low sentivity (i.e., not bearing the mutation does not mean that there is no risk for severe toxicities). Alternatively, phenotyping DPD using ex-vivo enzymatic assay or surrogate testing (i.e., monitoring physiological dihydrouracil to uracil ratio in plasma) has been presented as a possible upfront strategy to detect DPD deficiency. 5-FU test dose (i.e., preliminary administration of a small dose of 5-FU with pharmacokinetics evaluation) has been proposed as another possible alternative strategy to secure the use of fluoropyrimidine drugs.
The diagnosis of short-chain acyl-coenzyme A dehydrogenase deficiency is based on the following:
- Newborn screening test
- Genetic testing
- Urine test
The differential diagnosis for short-chain acyl-coenzyme A dehydrogenase deficiency is: ethylmalonic encephalopathy, mitochondrial respiratory chain defects and "multiple" acyl-CoA dehydrogenase deficiency.
Autozygome analysis and biochemical evaluations of urinary sugars and polyols can be used to diagnose Transaldolase Deficiency. Two specific methods for measuring the urinary sugars and polyols are liquid chromatographytandem mass spectrometry and gas chromatography with flame ionization detection.
A new investigation has identified a seemingly successful treatment for LRBA deficiency by targeting CTLA4. Abatacept, an approved drug for rheumatoid arthritis, mimics the function of CTLA4 and has found to reverse life-threatening symptoms. The study included nine patients that exhibited improved clinical status and halted inflammatory conditions with minimal infectious or autoimmune complications. The study also suggests that therapies like chloroquine or hydroxychloroquine, which inhibit lysosomal degradation, may prove to be effective, as well. Larger cohorts are required to further validate these therapeutic approaches as effective long-term treatments for this disorder.
A survey of 10,000 American households revealed that the prevalence of diagnosed primary immunodeficiency approaches 1 in 1200. This figure does not take into account people with mild immune system defects who have not received a formal diagnosis.
Milder forms of primary immunodeficiency, such as selective immunoglobulin A deficiency, are fairly common, with random groups of people (such as otherwise healthy blood donors) having a rate of 1:600. Other disorders are distinctly more uncommon, with incidences between 1:100,000 and 1:2,000,000 being reported.
The diagnosis of this condition can be done via the following:
- Flow cytometry
- Bleeding time analysis
Based on the results of worldwide screening of biotinidase deficiency in 1991, the incidence of the disorder is:
5 in 137,401 for profound biotinidase deficiency
- One in 109,921 for partial biotinidase deficiency
- One in 61,067 for the combined incidence of profound and partial biotinidase deficiency
- Carrier frequency in the general population is approximately one in 120.
Diagnosis of mitochondrial trifunctional protein deficiency is often confirmed using tandem mass spectrometry. It should be noted that genetic counseling is available for this condition. Additionally the following exams are available:
- CBC
- Urine test
Treatment of THB deficiencies consists of THB supplementation (2–20 mg/kg per day) or diet to control blood phenylalanine concentration and replacement therapy with neurotransmitters precursors (L-DOPA and 5-HTP) and supplements of folinic acid in DHPR deficiency.
Tetrahydrobiopterin is available as a tablet for oral administration in the form of "tetrahydrobiopterin dihydrochloride" (BH4*2HCL). BH4*2HCL is FDA approved under the trade name Kuvan. The typical cost of treating a patient with Kuvan is $100,000 per year. BioMarin holds the patent for Kuvan until at least 2024, but Par Pharmaceutical has a right to produce a generic version by 2020. BH4*2HCL is indicated at least in tetrahydrobiopterin deficiency caused by GTPCH deficiency or PTPS deficiency.
There are several treatments available for bleeding due to factor X deficiency, however a specifi FX concentrate is not available (2009).
1. Prothrombin complex concentrate (PCC) supplies FX with a risk of thrombosis.
2. Fresh frozen plasma (FFP): This is relatively inexpensive and readily available. While effective this treatment carries a risk of blood-borne viruses and fluid overload.
3. If vitamin K levels are low, vitamin K can be supplied orally or parenterally.
Treatment of FX deficiency in amyloidosis may be more complex and involve surgery (splenectomy) and chemotherapy.
Blood tests are needed to differentiate FX deficiency from other bleeding disorders. Typical are normal thrombin time, prolonged prothrombin time (PT) and prolonged partial thromboplastin time(PTT). FX antigen and its coagulant activity can be used to classify the severity of the condition:
1. Type I has low levels of FX antigen and activity.
2. Type II has low coagulant activity but normal or borderline FX antigen levels.
The FX (F10) gene is found on chromosome 13q34. Heterogeneous mutations have been described in FX deficient patients.
In terms of management for complement deficiency, immunosuppressive therapy should be used depending on the disease presented. A C1-INH concentrate can be used for angio-oedema (C1-INH deficiency).
Pneumococcus and haemophilus infections prevention can be taken via immunization for those with complement deficiency. Epsilon-aminocaproic acid could be used to treat hereditary C1-INH deficiency, though the possible side effect of intravascular thrombosis should be weighed.