Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
MRI will help with the diagnosis of structural abnormality of the brain. Genetic testing may also be pursued.
Ischiopatellar dysplasia is usually identified through radiographic evidence since its characteristic changes are most notable in radiographic tests that indicate delayed boneage or absent ossification. A full skeletal survey should be performed on any patient that has an absent or hypoplastic patellae since they could potentially have ischiopatellar dysplasia. Magnetic resonance imaging (MRI) is especially helpful in the diagnosis of ischiopatellar syndrome and is recommended when an individual affected by ischiopatellar dysplasia has a traumatic injury to the knee.
A combination of medical tests are used to diagnosis kniest dysplasia. These tests can include:
- Computer Tomography Scan(CT scan) - This test uses multiple images taken at different angles to produce a cross-sectional image of the body.
- Magnetic Resonance Imaging (MRI) - This technique proves detailed images of the body by using magnetic fields and radio waves.
- EOS Imaging - EOS imaging provides information on how musculoskeletal system interacts with the joints. The 3D image is scanned while the patient is standing and allows the physician to view the natural, weight-bearing posture.
- X-rays - X-ray images will allow the physician to have a closer look on whether or not the bones are growing abnormally.
The images taken will help to identify any bone anomalies. Two key features to look for in a patient with kniest dysplasia is the presence of dumb-bell shaped femur bones and coronal clefts in the vertebrae. Other features to look for include:
- Platyspondyly (flat vertebral bodies)
- Kyphoscoliosis (abnormal rounding of the back and lateral curvature of the spine)
- Abnormal growth of epiphyses, metaphyses, and diaphysis
- Short tubular bones
- Narrowed joint spaces
Genetic Testing - A genetic sample may be taken in order to closely look at the patient's DNA. Finding an error in the COL2A1 gene will help identify the condition as a type II chondroldysplasia.
There is no causative / curative therapy. Symptomatic medical treatments are focussing on symptoms caused by orthopaedic, dental or cardiac problems. Regarding perioperative / anesthesiological management, recommendations for medical professionals are published at OrphanAnesthesia.
The actual incidence of this disease is not known, but only 243 cases have been reported in the scientific literature, suggesting an incidence of on the order of one affected person in ten million people.
Diagnosis should be based on the clinical and radiographic findings and a genetic analysis can be assessed.
People with Pyle disease are often asymptomatic. Dental anomalies may require orthodontic interventions. Skeletal anomalies may require orthopedic surgery.
In utero exposure to cocaine and other street drugs can lead to septo-optic dysplasia.
Like treatment options, the prognosis is dependent on the severity of the symptoms. Despite the various symptoms and limitations, most individuals have normal intelligence and can lead a normal life.
Modeling EEC syndrome in vitro has been achieved by reprogramming EEC fibroblasts carrying mutations R304W and R204W into induced pluripotent stem cell (iPSC) lines. EEC-iPSC recapitulated defective epidermal and corneal fates. This model further identified PRIMA-1MET, a small compound that was identified as a compound targeting and reactivating p53 mutants based on a cell-based screening for rescuing the apoptotic activity of p53, as efficient to rescue R304W mutation defect. Of interest, similar effect had been observed on keratinocytes derived from the same patients. PRIMA-1MET could become an effective therapeutic tool for EEC patients.
Further genetic research is necessary to identify and rule out other possible loci contributing to EEC syndrome, though it seems certain that disruption of the p63 gene is involved to some extent. In addition, genetic research with an emphasis on genetic syndrome differentiation should prove to be very useful in distinguishing between syndromes that present with very similar clinical findings. There is much debate in current literature regarding clinical markers for syndromic diagnoses. Genetic findings could have great implications in clinical diagnosis and treatment of not only EEC, but also many other related syndromes.
The disorder is progressive, with the ultimate severity of symptoms often depending on age of onset. In severe cases amputation has been performed when conservative measures such as physical therapy and regional anesthetics have been ineffective.
RL syndrome is characterized by renal dysplasia, growth retardation, phocomelia or mesomelia, radiohumeral fusion (joining of radius and humerus), rib abnormalities, anomalies of the external genitalia and potter-like facies among many others.
There is no specific treatment or cure for individuals affected with this type of syndrome, though some of the abnormal physical features may be surgically correctable.
Ischiopatellar dysplasia is sometimes referred to as Scott-Taor syndrome after the researchers who first described ischiopatellar dysplasia as they recognized it in a family as an autosomal dominant disorder in 1979. This finding was important as they were the first to note that it was a benign disorder that is separate from the more severe nail-patella syndrome. Other common names for ischiopatellar syndrome are small patella syndrome (SPS), since the patellae are often small or absent in patients who have this syndrome, and coxo-podo-patellaire syndrome.
The term thanatophoric is Greek for "death bearing". Children with this condition are usually stillborn or die shortly after birth from respiratory failure, however a small number of individuals have survived into childhood and a very few beyond. Survivors have difficulty breathing on their own and require respiratory support such as high flow oxygen through a canula or ventilator support via tracheostomy. There may also be evidence of spinal stenosis and seizures.
The oldest known living TD survivor is a 29-year-old female. One male lived to be 26 years old. Another male lived to age 20. TD survivor, Chrisopher Álvarez, 18, is Colombian living in New York. Two children with TD aged 10 and 12, a male and a female, are known in Germany. There is also a 6-year-old male living with TD and two 1-year old males.
Rosselli–Gulienetti syndrome, also known as Zlotogora–Ogur syndrome and Bowen–Armstrong syndrome, is a type of congenital ectodermal dysplasia syndrome. The syndrome is relatively rare and has only been described in a few cases.
Renal dysplasia-limb defects syndrome (RL syndrome), also known as Ulbright–Hodes syndrome, is a very rare autosomal recessive congenital disorder. It has been described in three infants, all of whom died shortly after birth.
Acro–dermato–ungual–lacrimal–tooth (ADULT) syndrome is a rare genetic disease. ADULT syndrome is an autosomal dominant form of ectodermal dysplasia, a group of disorders that affects the hair, teeth, nails, sweat glands, and extremities. The syndrome arises from a mutation in the TP63 gene. This disease was previously thought to be a form of ectrodactyly–ectodermal dysplasia–cleft syndrome (EEC), but was classified as a different disease in 1993 by Propping and Zerres.
Pyle disease may be confused with craniometaphyseal dysplasia. The two, however, are clinically, radiographically, and genetically distinct from one another.
Renal-hepatic-pancreatic dysplasia is an autosomal recessive congenital disorder characterized by pancreatic fibrosis, renal dysplasia and hepatic dysgenesis. It is usually fatal soon after birth.
An association with NPHP3 has been described.
It was characterized in 1959.
Oculodentodigital syndrome (ODD syndrome) is an extremely rare genetic condition that typically results in small eyes, underdeveloped teeth, and syndactyly and malformation of the fourth and fifth fingers. It has also been called oculo-dento-digital syndrome, oculodentodigital dysplasia (ODDD), and oculodentoosseous dysplasia (ODOD). It is considered a kind of ectodermal dysplasia.
People with ED often have certain cranial-facial features which can be distinctive: frontal bossing is common, longer or more pronounced chins are frequent, broader noses are also very common. In some types of ED, abnormal development of parts of the eye can result in dryness of the eye, cataracts, and vision defects. Professional eye care can help minimize the effects of ED on vision. Similarly, abnormalities in the development of the ear may cause hearing problems. Respiratory infections can be more common because the normal protective secretions of the mouth and nose are not present. Precautions must be taken to limit infections.
X-Ray
Bubbly lytic lesion / Ground glass
Imaging tests. Computerized tomography or magnetic resonance imaging scans may be used to determine how extensively your bones are affected.
Bone scan. This test uses radioactive tracers, which are injected into your bloodstream. The damaged parts of your bones take up more of the tracers, which show up more brightly on the scan.
Biopsy. This test uses a hollow needle to remove a small piece of the affected bone for laboratory analysis.
ADULT syndrome features include ectrodactyly, syndactyly, excessive freckling, lacrimal duct anomalies, dysplastic nails, hypodontia, hypoplastic breasts and nipples, hypotrichosis, hypohidrosis, broad nasal bridge, midfacial hypoplasia, exfoliative dermatitis, and xerosis. The lack of facial clefting and ankyloblepharon are important because they exist in ectrodactyly–ectodermal dysplasia–cleft syndrome (EEC) but not in ADULT syndrome.
Spondyloepimetaphyseal dysplasia, Pakistani type is a form of spondyloepimetaphyseal dysplasia involving "PAPSS2" (also known as "ATPSK2"). The condition is rare.