Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
The diagnosis of neurosarcoidosis often is difficult. Definitive diagnosis can only be made by biopsy (surgically removing a tissue sample). Because of the risks associated with brain biopsies, they are avoided as much as possible. Other investigations that may be performed in any of the symptoms mentioned above are computed tomography (CT) or magnetic resonance imaging (MRI) of the brain, lumbar puncture, electroencephalography (EEG) and evoked potential (EP) studies. If the diagnosis of sarcoidosis is suspected, typical X-ray or CT appearances of the chest may make the diagnosis more likely; elevations in angiotensin-converting enzyme and calcium in the blood, too, make sarcoidosis more likely. In the past, the Kveim test was used to diagnose sarcoidosis. This now obsolete test had a high (85%) sensitivity, but required spleen tissue of a known sarcoidosis patient, an extract of which was injected into the skin of a suspected case.
Only biopsy of suspicious lesions in the brain or elsewhere is considered useful for a definitive diagnosis of neurosarcoid. This would demonstrate granulomas (collections of inflammatory cells) rich in epithelioid cells and surrounded by other immune system cells (e.g. plasma cells, mast cells). Biopsy may be performed to distinguish mass lesions from tumours (e.g. gliomas).
MRI with gadolinium enhancement is the most useful neuroimaging test. This may show enhancement of the pia mater or white matter lesions that may resemble the lesions seen in multiple sclerosis.
Lumbar puncture may demonstrate raised protein level, pleiocytosis (i.e. increased presence of both lymphocytes and neutrophil granulocytes) and oligoclonal bands. Various other tests (e.g. ACE level in CSF) have little added value.
Some recent papers propose to classify neurosarcoidosis by likelihood:
- "Definite" neurosarcoidosis can only be diagnosed by plausible symptoms, a positive biopsy and no other possible causes for the symptoms
- "Probable" neurosarcoidosis can be diagnosed if the symptoms are suggestive, there is evidence of central nervous system inflammation (e.g. CSF and MRI), and other diagnoses have been excluded. A diagnosis of systemic sarcoidosis is not essential.
- "Possible" neurosarcoidosis may be diagnosed if there are symptoms not due to other conditions but other criteria are not fulfilled.
Diagnosis of sarcoidosis is a matter of exclusion, as there is no specific test for the condition. To exclude sarcoidosis in a case presenting with pulmonary symptoms might involve a chest radiograph, CT scan of chest, PET scan, CT-guided biopsy, mediastinoscopy, open lung biopsy, bronchoscopy with biopsy, endobronchial ultrasound, and endoscopic ultrasound with fine-needle aspiration of mediastinal lymph nodes (EBUS FNA). Tissue from biopsy of lymph nodes is subjected to both flow cytometry to rule out cancer and special stains (acid fast bacilli stain and Gömöri methenamine silver stain) to rule out microorganisms and fungi.
Serum markers of sarcoidosis, include: serum amyloid A, soluble interleukin-2 receptor, lysozyme, angiotensin converting enzyme, and the glycoprotein KL-6. Angiotensin-converting enzyme blood levels are used in the monitoring of sarcoidosis. A bronchoalveolar lavage can show an elevated (of at least 3.5) CD4/CD8 T cell ratio, which is indicative (but not proof) of pulmonary sarcoidosis. In at least one study the induced sputum ratio of CD4/CD8 and level of TNF was correlated to those in the lavage fluid. A sarcoidosis-like lung disease called granulomatous–lymphocytic interstitial lung disease can be seen in patients with common variable immunodeficiency (CVID) and therefore serum antibody levels should be measured to exclude CVID.
Differential diagnosis includes metastatic disease, lymphoma, septic emboli, rheumatoid nodules, granulomatosis with polyangiitis, varicella infection, tuberculosis, and atypical infections, such as "Mycobacterium avium" complex, cytomegalovirus, and cryptococcus. Sarcoidosis is confused most commonly with neoplastic diseases, such as lymphoma, or with disorders characterized also by a mononuclear cell granulomatous inflammatory process, such as the mycobacterial and fungal disorders.
Chest radiograph changes are divided into four stages:
1. bihilar lymphadenopathy
2. bihilar lymphadenopathy and reticulonodular infiltrates
3. bilateral pulmonary infiltrates
4. fibrocystic sarcoidosis typically with upward hilar retraction, cystic and bullous changes
Although people with stage 1 radiographs tend to have the acute or subacute, reversible form of the disease, those with stages 2 and 3 often have the chronic, progressive disease; these patterns do not represent consecutive "stages" of sarcoidosis. Thus, except for epidemiologic purposes, this categorization is mostly of historic interest.
In sarcoidosis presenting in the Caucasian population, hilar adenopathy and erythema nodosum are the most common initial symptoms. In this population, a biopsy of the gastrocnemius muscle is a useful tool in correctly diagnosing the person. The presence of a noncaseating epithelioid granuloma in a gastrocnemius specimen is definitive evidence of sarcoidosis, as other tuberculoid and fungal diseases extremely rarely present histologically in this muscle.
Sarcoidosis may be divided into the following types:
- Annular sarcoidosis
- Erythrodermic sarcoidosis
- Ichthyosiform sarcoidosis
- Hypopigmented sarcoidosis
- Löfgren syndrome
- Lupus pernio
- Morpheaform sarcoidosis
- Mucosal sarcoidosis
- Neurosarcoidosis
- Papular sarcoid
- Scar sarcoid
- Subcutaneous sarcoidosis
- Systemic sarcoidosis
- Ulcerative sarcoidosis
The diagnosis of retroperitoneal fibrosis cannot be made on the basis of results of laboratory studies. CT is the best diagnostic modality: a confluent mass surrounding the aorta can be seen on a CT scan. Although biopsy is not usually recommended, it is appropriate when malignancy or infection is suspected. Biopsy should also be done if the location of fibrosis is atypical or if there is an inadequate response to initial treatment.
Retinal vasculitis is very rare as the only presenting symptom. Often there is sufficient systemic evidence to help the physician decide between any one of the aforementioned possible systemic diseases. For those patients who present with only vasculitis of the retinal vessels, great investigative effort (Chest X-ray, blood test, urinary analysis, vascular biopsy, ophthalmology assessment, etc.) should be undertaken to ensure that a systemic disease is not the hidden culprit.
Ophthalmic examination may reveal neovascularization (creation of new vessels in the retina), retinal vessel narrowing, retinal vessel cuffing, retinal hemorrhage, or possible vitritis (inflammation of the vitreous body) or choroiditis (inflammation of the choroid).
Erythema nodosum is diagnosed clinically. A biopsy can be taken and examined microscopically to confirm an uncertain diagnosis. Microscopic examination usually reveals a neutrophilic infiltrate surrounding capillaries that results in septal thickening, with fibrotic changes in the fat around blood vessels. A characteristic microscopic finding is radial granulomas, well-defined nodular aggregates of histiocytes surrounding a stellate cleft.
Additional evaluation should be performed to determine the underlying cause of erythema nodosum. This may include a full blood count, erythrocyte sedimentation rate (ESR), antistreptolysin-O (ASO) titer and throat culture, urinalysis, intradermal tuberculin test, and a chest x-ray. The ESR is typically high, the C-reactive protein elevated, and the blood showing an increase in white blood cells.
The ESR is initially very high, and falls as the nodules of erythema nodosum. The ASO titer is high in cases associated with a streptococcal throat infection. A chest X-ray should be performed to rule out pulmonary diseases, in particular sarcoidosis and Löfgren syndrome.
In the absence of severe urinary tract obstruction (which generally requires surgery with omental wrapping), treatment is generally with glucocorticoids initially, followed by DMARDs either as steroid-sparing agents or if refractory on steroids. The SERM tamoxifen has shown to improve the condition in various small trials, although the exact mechanism of its action remains unclear.
Associations include:
- Riedel's thyroiditis
- previous radiotherapy
- sarcoidosis
- inflammatory abdominal aortic aneurysm
- drugs
Sarcoidosis is a systemic disease of unknown cause that results in the formation of non-caseating granulomas in multiple organs. The prevalence is higher among blacks than whites by a ratio of 20:1. Usually the disease is localized to the chest, but urogenital involvement is found in 0.2% of clinically diagnosed cases and 5% of those diagnosed at necropsy. The kidney is the most frequently affected urogenital organ, followed in men by the epididymis. Testicular sarcoidosis can present as a diffuse painless scrotal mass or can mimic acute epididymo-orchitis. Usually it appears with systemic manifestations of the disease. Since it causes occlusion and fibrosis of the ductus epididymis, fertility may be affected. On ultrasound, the hypoechogenicity and ‘infiltrative’ pattern seen in the present case are recognized features. Opinions differ on the need for histological proof, with reports of limited biopsy and frozen section, radical orchiectomy in unilateral disease and unilateral orchiectomy in bilateral disease. The peak incidence of sarcoidosis and testicular neoplasia coincide at 20–40 years and this is why most patients end up having an orchiectomy. However, testicular tumours are much more common in white men, less than 3.5% of all testicular tumours being found in black men. These racial variations justify a more conservative approach in patients of descent with proven sarcoidosis elsewhere. Careful follow-up and ultrasonic surveillance may be preferable in certain clinical settings to biopsy and surgery, especially in patients with bilateral testicular disease.
Two main approaches to genitourinary sarcoidosis have been proposed. Based on the marked relationship between testicular cancer and sarcoidosis, orchiectomy is recommended, even if evidence of sarcoidosis in other organs is present. By contrast, others consider immediate orchiectomy as being quite aggressive because of several factors associated with a benign diagnosis, as well as the involvement of the epididymis or vas deferens and bilateral testicular involvement. If the malignant diagnosis is established by exploration and intraoperative ultrasound-guided biopsy, orchiectomy is performed in cases of diffuse involvement of a testis. Spontaneous resolution has been reported in 50% to 70% of patients with active sarcoidosis. If the diagnosis is not established unequivocally, immunosuppressive agents (frequently steroids) will resolve the inflammation in patients who wish to salvage their fertility; and in those with severely advanced disease, after careful consideration.
A new approach has been proposed recently, based on the absence of evidence for malignant transformation in pathologically confirmed benign diagnosed testicular sarcoidosis, and it involves the open exploration of both testes, with resection of the largest lesion (on the right tunica). In this technique, patient was not given steroids after the operation. Nevertheless, careful follow-up may be preferred to medication or surgery in certain clinical settings.
Diagnosis of Dercum's disease is done through a physical examination. In order to properly diagnose the patient, the doctor must first exclude all other possible differential diagnosis. The basic criteria for Dercum's disease are patients with chronic pain in the adipose tissue (body fat) and patients who are also obese. Although rare, the diagnosis may not include obesity. Dercum's disease can also be inherited and a family medical history may aid in the diagnosis of this disease. There are no specific laboratory test for this disease. Ultrasound and magnetic resonance imaging can play a role in diagnosis.
The diagnosis is usually made by tissue biopsy, however this cannot reliably distinguish between the granulomas of OFG and those of Crohn's disease or sarcoidosis. Other causes of granulomatous inflammation are ruled out, such as sarcoidosis,
Crohn's disease, allergic or foreign body reactions and mycobacterial infections.
Treatment protocol is not well established. Some sources report that approximately half of the patients will fully recover after lengthy (mean time 14.5 months, range 2–24 months) expectant management.
Treatment with steroids is lengthy and usually requires about 6 months. While some source report very good success with steroids most report a considerable risk of recurrence after a treatment with steroids alone. Steroids are known to cause elevation of prolactin levels and increase risk of several conditions such as diabetes, and other endocrinopathies which in turn increase the risk of IGM. Treatment with topical steroids to limit side effects was also reported in one case. For surgical treatment recurrence rates of 5-50% have been reported.
A 1997 literature review article recommended complete resection or corticosteroid therapy, stating also that long-term follow-up was indicated due to a high rate of recurrence.
Treatment with a combination of glucocorticoids and prolactin lowering medications such as bromocriptine or cabergoline was used with good success in Germany. Prolactin lowering medication has also been reported to reduce the risk of recurrence. In cases of drug-induced hyperprolactinemia (such as antipsychotics) prolactin-sparing medication can be tried.
Methotrexate alone or in combination with steroids has been used with good success. Its principal mechanism of action is immunomodulating activity, with a side effect profile that is more favorable for treating IGM.
Colchicine, azathioprine and NSAIDs have also been used.
Cerebral atrophy can be hard to distinguish from hydrocephalus because both cerebral atrophy and hydrocephalus involve an increase in cerebrospinal fluid (CSF) volume. In cerebral atrophy, this increase in CSF volume comes as a result of the decrease in cortical volume. In hydrocephalus, the increase in volume happens due to the CSF itself.
A foreign-body granuloma occurs when a foreign body (such as a wood splinter, piece of metal, glass etc.) penetrates the body's soft tissue followed by acute inflammation and formation of a granuloma. In some cases the foreign body can be found and removed even years after the precipitating event.
CT and MRI are most commonly used to observe the brain for cerebral atrophy. A CT scan takes cross sectional images of the brain using X-rays, while an MRI uses a magnetic field. With both measures, multiple images can be compared to see if there is a loss in brain volume over time.
Aspiration pneumonia is typically caused by aspiration of bacteria from the oral cavity into the lungs, and does not result in the formation of granulomas. However, granulomas may form when food particles or other particulate substances like pill fragments are aspirated into the lungs. Patients typically aspirate food because they have esophageal, gastric or neurologic problems. Intake of drugs that depress neurologic function may also lead to aspiration. The resultant granulomas are typically found around the airways (bronchioles) and are often accompanied by foreign-body-type multinucleated giant cells, acute inflammation or organizing pneumonia. The finding of food particles in lung biopsies is diagnostic.
The Great Imitator (also The Great Masquerader) is a phrase used for medical conditions that feature nonspecific symptoms and may be confused with a number of other diseases. Most great imitators are systemic in nature. Diseases sometimes referred to with this name include:
- Various cancers
- Intravascular large B-cell lymphoma
- Various rheumatic conditions, including:
- Fibromyalgia
- Psoriatic arthritis
- Lupus erythematosus
- Systemic lupus erythematosus
- Sarcoidosis
- Multiple sclerosis
- Celiac disease
- Addison's Disease
- Pulmonary embolism
- Various infectious diseases, including:
- Syphilis
- Lyme disease
- Nocardiosis
- Tuberculosis
- Brucellosis
- Malaria
- Breathing-related sleep disorders (chiefly sleep apnea/hypopnea and upper-airway resistance syndrome).
Dacryoadenitis can be diagnosed by examination of the eyes and lids. Special tests such as a CT scan may be required to search for the cause. Sometimes biopsy will be needed to be sure that a tumor of the lacrimal gland is not present.
Erythema nodosum is self-limiting and usually resolves itself within 3–6 weeks. A recurring form does exist, and in children it is attributed to repeated infections with streptococcus. Treatment should focus on the underlying cause. Symptoms can be treated with bedrest, leg elevation, compressive bandages, wet dressings, and nonsteroidal anti-inflammatory agents (NSAIDs). NSAIDs are usually more effective at the onset of EN versus with chronic disease.
Potassium iodide can be used for persistent lesions whose cause remains unknown. Corticosteroids and colchicine can be used in severe refractory cases. Thalidomide has been used successfully in the treatment of Erythema nodosum leprosum, and it was approved by the U.S. FDA for this use in July 1998.
Other than identifying and treating any underlying conditions in secondary livedo, idiopathic livedo reticularis may improve with warming the area.
Anti-tumour necrosis factor α antagonists (e.g. infliximab)
Dietary restriction of a particular suspected or proven antigen may be involved in the management of OFG, such as cinnamon or benzoate-free diets.
Clinical signs include redness of the eye, pain, blurring of vision, photophobia and floaters.
Mumps can be prevented by immunization. Gonococcus, bacteria can be avoided by the use of condoms. Most other causes cannot be prevented.
Idiopathic granulomatous mastitis is defined as granulomatous mastits without any other attributable cause such as those above mentioned. It occurs on average two years and almost exclusively up to six years after pregnancy, usual age range is 17 to 42 years. Some cases have been reported that were related to drug induced hyperprolactinemia.
Exceptionally rarely it has been diagnosed during pregnancy and in men.