Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Transfusion therapy lowers the risk for a new silent stroke in children who have both abnormal cerebral artery blood flow velocity, as detected by transcranial Doppler, and previous silent infarct, even when the initial MRI showed no abnormality. A finding of elevated TCD ultrasonographic velocity warrants MRI of the brain, as those with both abnormalities who are not provided transfusion therapy are at higher risk for developing a new silent infarct or stroke than are those whose initial MRI showed no abnormality.
Preventive measures that can be taken to avoid sustaining a silent stroke are the same as for stroke. Smoking cessation is the most immediate step that can be taken, with the effective management of hypertension the major medically treatable factor.
After taking the patient’s history, a thorough neurologic exam is needed to identify focal neurologic deficits, paying attention to the cranial nerve, motor, sensory, and coordination components of the exam. After the history and physical exam, clinicians may move on to laboratory workup and imaging.
Laboratory workup
Laboratory tests should focus on ruling out metabolic conditions that may mimic TIA (e.g. hypoglycemia causing altered mental status), in addition to further evaluating a patient’s risk factors for ischemic events. All patients should receive a complete blood count with platelet count, blood glucose, basic metabolic panel, prothrombin time/international normalized ratio, and activated partial thromboplastin time as part of their initial workup. These tests help with screening for bleeding or hypercoagulable conditions. An electrocardiogram will also be necessary to rule out abnormal heart rhythms such as atrial fibrillation that can predispose patients to clot formation and embolic events. Other lab tests, such as a full hypercoagulable state workup or serum drug screening should be considered based on the clinical situation and factors such as age of the patient and family history. A fasting lipid panel is also appropriate to thoroughly evaluate the patient’s risk for atherosclerotic disease and ischemic events in the future.
Imaging:
According to guidelines from the American Heart Association and American Stroke Association Stroke Council, patients with TIA should have head imaging “within 24 hours of symptom onset, preferably with magnetic resonance imaging, including diffusion sequences”. MRI is a better imaging modality for TIA than computed tomography (CT), as it is better able to pick up both new and old ischemic lesions than CT. CT, however, is more widely available and can be used particularly to rule out intracranial hemorrhage. Diffusion sequences can help further localize the area of ischemia and can serve as prognostic indicators. Presence of ischemic lesions on diffusion weighted imaging has been correlated with a higher risk of stroke after a TIA.
Vessels in the head and neck may also be evaluated to look for atherosclerotic lesions that may benefit from interventions such as carotid endarterectomy. The vasculature can be evaluated through the following imaging modalities: magnetic resonance angiography (MRA), CT angiography (CTA), and carotid ultrasonography/transcranial doppler ultrasonography. Carotid ultrasonography is often used to screen for carotid artery stenosis, as it is more readily available. However, all of the above imaging methods have variable sensitivities and specificities, making it important to supplement one of the imaging methods with another to help confirm the diagnosis (for example: screen for the disease with ultrasonography, and confirm with CTA). Confirming a diagnosis of carotid artery stenosis is important because the treatment for this condition, carotid endarterectomy, can pose significant risk to the patient, including heart attacks and strokes after the procedure. For this reason, the U.S. Preventive Services Task Force (USPSTF) "recommends against screening for asymptomatic carotid artery stenosis in the general adult population". This recommendation is for asymptomatic patients, so it does not necessarily apply to patients with TIAs as these may in fact be a symptom of underlying carotid artery disease (see "Causes and Pathogenesis" above). Therefore, patients who have had a TIA may opt to have a discussion with their clinician about the risks and benefits of screening for carotid artery stenosis, including the risks of surgical treatment of this condition.
Cardiac imaging can be performed if head and neck imaging do not reveal a vascular cause for the patient’s TIA (such as atherosclerosis of the carotid artery or other major vessels of the head and neck). Echocardiography can be performed to identify patent foramen ovale (PFO), valvular stenosis, and atherosclerosis of the aortic arch that could be sources of clots causing TIAs, with transesophageal echocardiography being more sensitive than transthoracic echocardiography in identifying these lesions. Prolonged cardiac rhythm monitoring can be considered to rule out arrhythmias like paroxysmal atrial fibrillation that may lead to clot formation and TIAs, however this should be considered if other causes of TIA have not been found.
Nutrition, specifically the Mediterranean-style diet, has the potential for decreasing the risk of having a stroke by more than half. It does not appear that lowering levels of homocysteine with folic acid affects the risk of stroke.
When a stroke has been diagnosed, various other studies may be performed to determine the underlying cause. With the current treatment and diagnosis options available, it is of particular importance to determine whether there is a peripheral source of emboli. Test selection may vary since the cause of stroke varies with age, comorbidity and the clinical presentation. The following are commonly used techniques:
- an ultrasound/doppler study of the carotid arteries (to detect carotid stenosis) or dissection of the precerebral arteries;
- an electrocardiogram (ECG) and echocardiogram (to identify arrhythmias and resultant clots in the heart which may spread to the brain vessels through the bloodstream);
- a Holter monitor study to identify intermittent abnormal heart rhythms;
- an angiogram of the cerebral vasculature (if a bleed is thought to have originated from an aneurysm or arteriovenous malformation);
- blood tests to determine if blood cholesterol is high, if there is an abnormal tendency to bleed, and if some rarer processes such as homocystinuria might be involved.
For hemorrhagic strokes, a CT or MRI scan with intravascular contrast may be able to identify abnormalities in the brain arteries (such as aneurysms) or other sources of bleeding, and structural MRI if this shows no cause. If this too does not identify an underlying reason for the bleeding, invasive cerebral angiography could be performed but this requires access to the bloodstream with an intravascular catheter and can cause further strokes as well as complications at the insertion site and this investigation is therefore reserved for specific situations. If there are symptoms suggesting that the hemorrhage might have occurred as a result of venous thrombosis, CT or MRI venography can be used to examine the cerebral veins.
Computed tomography (CT) and MRI scanning will show damaged area in the brain, showing that the symptoms were not caused by a tumor, subdural hematoma or other brain disorder. The blockage will also appear on the angiogram.
Diagnosis of TIA involves a combination of asking the patient questions about their symptoms and medical history, physical exam, and head imaging. History taking includes defining the symptoms and looking for mimicking symptoms as described above. Bystanders can be very helpful in describing the symptoms and giving details about when they started and how long they lasted. The time course (onset, duration, and resolution), precipitating events, and risk factors are particularly important. Finally, a thorough review of symptoms is necessary to rule in or out other items on the differential diagnosis of TIA. These include, but are not limited to:
Although the mechanism is not entirely understood, the likelihood of a watershed stroke increases after cardiac surgery. An experiment conducted in a five-year span studied the diagnosis, etiology, and outcome of these postoperative strokes. It was observed that intraoperative decrease in blood pressure may lead to these strokes and patients who have undergone aortic procedures are more likely to have bilateral watershed infarcts. Furthermore, bilateral watershed strokes are associated with poor short-term outcomes and are most reliably observed by diffusion-weighted imaging MRI. Thus future clinical research and practice should focus on the identification of bilateral stroke characteristics. This identification can help discover affected areas and increase correct diagnosis.
Hemodynamic impairment is thought to be the cause of deep watershed infarcts, characterized by a rosary-like pattern. However new studies have shown that microembolism might also contribute to the development of deep watershed infarcts. The dual contribution of hemodynamic impairment and microembolism would result in different treatment for patients with these specific infarcts.
In last decade, similar to myocardial infarction treatment, thrombolytic drugs were introduced in the therapy of cerebral infarction. The use of intravenous rtPA therapy can be advocated in patients who arrive to stroke unit and can be fully evaluated within 3 h of the onset.
If cerebral infarction is caused by a thrombus occluding blood flow to an artery supplying the brain, definitive therapy is aimed at removing the blockage by breaking the clot down (thrombolysis), or by removing it mechanically (thrombectomy). The more rapidly blood flow is restored to the brain, the fewer brain cells die. In increasing numbers of primary stroke centers, pharmacologic thrombolysis with the drug tissue plasminogen activator (tPA), is used to dissolve the clot and unblock the artery.
Another intervention for acute cerebral ischaemia is removal of the offending thrombus directly. This is accomplished by inserting a catheter into the femoral artery, directing it into the cerebral circulation, and deploying a corkscrew-like device to ensnare the clot, which is then withdrawn from the body. Mechanical embolectomy devices have been demonstrated effective at restoring blood flow in patients who were unable to receive thrombolytic drugs or for whom the drugs were ineffective, though no differences have been found between newer and older versions of the devices. The devices have only been tested on patients treated with mechanical clot embolectomy within eight hours of the onset of symptoms.
Angioplasty and stenting have begun to be looked at as possible viable options in treatment of acute cerebral ischaemia. In a systematic review of six uncontrolled, single-center trials, involving a total of 300 patients, of intra-cranial stenting in symptomatic intracranial arterial stenosis, the rate of technical success (reduction to stenosis of <50%) ranged from 90-98%, and the rate of major peri-procedural complications ranged from 4-10%. The rates of restenosis and/or stroke following the treatment were also favorable. This data suggests that a large, randomized controlled trial is needed to more completely evaluate the possible therapeutic advantage of this treatment.
If studies show carotid stenosis, and the patient has residual function in the affected side, carotid endarterectomy (surgical removal of the stenosis) may decrease the risk of recurrence if performed rapidly after cerebral infarction. Carotid endarterectomy is also indicated to decrease the risk of cerebral infarction for symptomatic carotid stenosis (>70 to 80% reduction in diameter).
In tissue losses that are not immediately fatal, the best course of action is to make every effort to restore impairments through physical therapy, cognitive therapy, occupational therapy, speech therapy and exercise.
Diagnostic methods include:
- Angiogram
Due to positive remodeling the plaque build-up shown on angiogram may appear further downstream on the x-ray where the luminal diameter would look normal even though there is severe narrowing at the real site. Because angiograms require x-rays to be visualized the number of times an individual can have it done over a year is limited by the guidelines for the amount of radiation they can be exposed to in a one-year period.
- Magnetic resonance imaging (MRI)
Magnetic resonance imaging has the ability to quantify the plaque anatomy and composition. This allows physicians to determine certain characteristics of the plaque such as how likely it is to break away from the wall and become an embolus. MRI does not use ionizing radiation, so the number of times that it is used on a single person is not a concern; however since it uses strong electric fields those who have metal implants in cannot use this technique.
- Computed tomography (CT)
Multidirectional computed tomography (MDCT) is better than regular CT scans, because it can provide a higher spatial resolution and it has a shorter acquisition time. MDCT uses x-rays to obtain the image; however it can identify the composition of the plaque. Thus it can be determined whether the plaque is calcified plaque and lipid-rich plaque, so the inherent risks can be determined. Subjects are exposed to a substantial amount of radiation with this procedure, so their use is limited.
Typically, tissue plasminogen activator may be administered within three to four-and-a-half hours of stroke onset if the patient is without contraindications (i.e. a bleeding diathesis such as recent major surgery or cancer with brain metastases). High dose aspirin can be given within 48 hours. For long term prevention of recurrence, medical regimens are typically aimed towards correcting the underlying risk factors for lacunar infarcts such as hypertension, diabetes mellitus and cigarette smoking. Anticoagulants such as heparin and warfarin have shown no benefit over aspirin with regards to five year survival.
Patients who suffer lacunar strokes have a greater chance of surviving beyond thirty days (96%) than those with other types of stroke (85%), and better survival beyond a year (87% versus 65-70%). Between 70% and 80% are functionally independent at 1 year, compared with fewer than 50% otherwise.
Occupational Therapy and Physical Therapy interventions are used in the rehabilitation of lacunar stroke. A physiotherapy program will improve joint range of motion of the paretic limb using passive range of motion exercises. When increases in activity are tolerated, and stability improvements are made, patients will progress from rolling to side-lying, to standing (with progressions to prone, quadruped, bridging, long-sitting and kneeling for example) and learn to transfer safely (from their bed to a chair or from a wheel chair to a car for example). Assistance and ambulation aids are used as required as the patient begins walking and lessened as function increases. Furthermore, splints and braces can be used to support limbs and joints to prevent complications such as contractures and spasticity. The rehabilitation healthcare team should also educate the patient and their family on common stroke symptoms and how to manage an onset of stroke. Continuing follow-up with a physician is essential so that the physician may monitor medication dosage and risk factors.
It is estimated that lacunar infarcts account for 25% of all ischemic strokes, with an annual incidence of approximately 15 per 100,000 people. They may be more frequent in men and in people of African, Mexican, and Hong Kong Chinese descent.
There are various neuroimaging investigations that may detect cerebral sinus thrombosis. Cerebral edema and venous infarction may be apparent on any modality, but for the detection of the thrombus itself, the most commonly used tests are computed tomography (CT) and magnetic resonance imaging (MRI), both using various types of radiocontrast to perform a venogram and visualise the veins around the brain.
Computed tomography, with radiocontrast in the venous phase ("CT venography" or CTV), has a detection rate that in some regards exceeds that of MRI. The test involves injection into a vein (usually in the arm) of a radioopaque substance, and time is allowed for the bloodstream to carry it to the cerebral veins - at which point the scan is performed. It has a sensitivity of 75-100% (it detects 75-100% of all clots present), and a specificity of 81-100% (it would be incorrectly positive in 0-19%). In the first two weeks, the "empty delta sign" may be observed (in later stages, this sign may disappear).
Magnetic resonance venography employs the same principles, but uses MRI as a scanning modality. MRI has the advantage of being better at detecting damage to the brain itself as a result of the increased pressure on the obstructed veins, but it is not readily available in many hospitals and the interpretation may be difficult.
Cerebral angiography may demonstrate smaller clots than CT or MRI, and obstructed veins may give the "corkscrew appearance". This, however, requires puncture of the femoral artery with a sheath and advancing a thin tube through the blood vessels to the brain where radiocontrast is injected before X-ray images are obtained. It is therefore only performed if all other tests give unclear results or when other treatments may be administered during the same procedure.
Once suspected, intracranial aneurysms can be diagnosed radiologically using magnetic resonance or CT angiography. But these methods have limited sensitivity for diagnosis of small aneurysms, and often cannot be used to specifically distinguish them from infundibular dilations without performing a formal angiogram. The determination of whether an aneurysm is ruptured is critical to diagnosis. Lumbar puncture (LP) is the gold standard technique for determining aneurysm rupture (subarachnoid hemorrhage). Once an LP is performed, the CSF is evaluated for RBC count, and presence or absence of xanthochromia.
Asymptomatic individuals with intracranial stenosis are typically told to take over the counter platelet inhibitors like aspirin whereas those with symptomatic presentation are prescribed anti-coagulation medications. For asymptomatic persons the idea is to stop the buildup of plaque from continuing. They are not experiencing symptoms; however if more build up occurs it is likely they will. For symptomatic individuals it is necessary to try and reduce the amount of stenosis. The anti-coagulation medications reduce the likelihood of further buildup while also trying to break down the current build up on the surface without an embolism forming. For those with severe stenosis that are at risk for impending stroke endovascular treatment is used. Depending on the individual and the location of the stenosis there are multiple treatments that can be undertaken. These include angioplasty, stent insertion, or bypass the blocked area.
A 2004 study suggested that the D-dimer blood test, already in use for the diagnosis of other forms of thrombosis, was abnormal (above 500 μg/l) in 34 out of 35 patients with cerebral sinus thrombosis, giving it a sensitivity of 97.1%, a negative predictive value of 99.6%, a specificity of 91.2%, and a positive predictive value of 55.7%. Furthermore, the level of the D-dimer correlated with the extent of the thrombosis. A subsequent study, however, showed that 10% of patients with confirmed thrombosis had a normal D-dimer, and in those who had presented with only a headache 26% had a normal D-dimer. The study concludes that D-dimer is not useful in the situations where it would make the most difference, namely in lower probability cases.
Various diagnostic modalities exist to demonstrate blood flow or absence thereof in the vertebral arteries. The gold standard is cerebral angiography (with or without digital subtraction angiography). This involves puncture of a large artery (usually the femoral artery) and advancing an intravascular catheter through the aorta towards the vertebral arteries. At that point, radiocontrast is injected and its downstream flow captured on fluoroscopy (continuous X-ray imaging). The vessel may appear stenotic (narrowed, 41–75%), occluded (blocked, 18–49%), or as an aneurysm (area of dilation, 5–13%). The narrowing may be described as "rat's tail" or "string sign". Cerebral angiography is an invasive procedure, and it requires large volumes of radiocontrast that can cause complications such as kidney damage. Angiography also does not directly demonstrate the blood in the vessel wall, as opposed to more modern modalities. The only remaining use of angiography is when endovascular treatment is contemplated (see below).
More modern methods involve computed tomography (CT angiography) and magnetic resonance imaging (MR angiography). They use smaller amounts of contrast and are not invasive. CT angiography and MR angiography are more or less equivalent when used to diagnose or exclude vertebral artery dissection. CTA has the advantage of showing certain abnormalities earlier, tends to be available outside office hours, and can be performed rapidly. When MR angiography is used, the best results are achieved in the "T" setting using a protocol known as "fat suppression". Doppler ultrasound is less useful as it provides little information about the part of the artery close to the skull base and in the vertebral foramina, and any abnormality detected on ultrasound would still require confirmation with CT or MRI.
Outcomes depend on the size of the aneurysm. Small aneurysms (less than 7 mm) have a low risk of rupture and increase in size slowly. The risk of rupture is less than a percent for aneurysms of this size.
The prognosis for a ruptured cerebral aneurysm depends on the extent and location of the aneurysm, the person's age, general health, and neurological condition. Some individuals with a ruptured cerebral aneurysm die from the initial bleeding. Other individuals with cerebral aneurysm recover with little or no neurological deficit. The most significant factors in determining outcome are the Hunt and Hess grade, and age. Generally patients with Hunt and Hess grade I and II hemorrhage on admission to the emergency room and patients who are younger within the typical age range of vulnerability can anticipate a good outcome, without death or permanent disability. Older patients and those with poorer Hunt and Hess grades on admission have a poor prognosis. Generally, about two-thirds of patients have a poor outcome, death, or permanent disability.
Prognosis of spontaneous cervical arterial dissection involves neurological and arterial results. The overall functional prognosis of individuals with stroke due to cervical artery dissection does not appear to vary from that of young people with stroke due to other causes. The rate of survival with good outcome (a modified Rankin score of 0–2) is generally about 75%, or possibly slightly better (85.7%) if antiplatelet drugs are used. In studies of anticoagulants and aspirin, the combined mortality with either treatment is 1.8–2.1%.
After the initial episode, 2% may experience a further episode within the first month. After this, there is a 1% annual risk of recurrence. Those with high blood pressure and dissections in multiple arteries may have a higher risk of recurrence. Further episodes of cervical artery dissection are more common in those who are younger, have a family history of cervical artery dissection, or have a diagnosis of Ehlers-Danlos syndrome or fibromuscular dysplasia.
Many studies of the mechanical properties of brain edema were conducted in the 2010, most of them based on finite element analysis (FEA), a widely used numerical method in solid mechanics. For example, Gao and Ang used the finite element method to study changes in intracranial pressure during craniotomy operations. A second line of research on the condition looks at thermal conductivity, which is related to tissue water content.
Treatment approaches can include osmotherapy using mannitol, diuretics to decrease fluid volume, corticosteroids to suppress the immune system, hypertonic saline, and surgical decompression to allow the brain tissue room to swell without compressive injury.
Hypoxic-anoxic events may affect the fetus at various stages of fetal development, during labor and delivery and in the postnatal period. Problems during pregnancy may include preeclampsia, maternal diabetes with vascular disease, congenital fetal infections, drug/alcohol abuse, severe fetal anemia, cardiac disease, lung malformations, or problems with blood flow to the placenta.
Problems during labor and delivery can include umbilical cord occlusion, torsion or prolapse, rupture of the placenta or uterus, excessive bleeding from the placenta, abnormal fetal position such as the breech position, prolonged late stages of labor, or very low blood pressure in the mother. Problems after delivery can include severe prematurity, severe lung or heart disease, serious infections, trauma to the brain or skull, congenital malformations of the brain or very low blood pressure in the baby and due to suffocation in cases of Münchausen syndrome by proxy.
The severity of a neonatal hypoxic-ischaemic brain injury may be assessed using Sarnat staging, which is based on clinical presentation and EEG findings, and also using MRI.
A study of aortic cross-clamping, a common procedure in cardiac surgery, demonstrated a strong potential benefit with further research ongoing.
Mild and moderate cerebral hypoxia generally has no impact beyond the episode of hypoxia; on the other hand, the outcome of severe cerebral hypoxia will depend on the success of damage control, amount of brain tissue deprived of oxygen, and the speed with which oxygen was restored.
If cerebral hypoxia was localized to a specific part of the brain, brain damage will be localized to that region. A general consequence may be epilepsy. The long-term effects will depend on the purpose of that portion of the brain. Damage to the Broca's area and the Wernicke's area of the brain (left side) typically causes problems with speech and language. Damage to the right side of the brain may interfere with the ability to express emotions or interpret what one sees. Damage on either side can cause paralysis of the opposite side of the body.
The effects of certain kinds of severe generalized hypoxias may take time to develop. For example, the long-term effects of serious carbon monoxide poisoning usually may take several weeks to appear. Recent research suggests this may be due to an autoimmune response caused by carbon monoxide-induced changes in the myelin sheath surrounding neurons.
If hypoxia results in coma, the length of unconsciousness is often indicative of long-term damage. In some cases coma can give the brain an opportunity to heal and regenerate, but, in general, the longer a coma, the greater the likelihood that the person will remain in a vegetative state until death. Even if the patient wakes up, brain damage is likely to be significant enough to prevent a return to normal functioning.
Long-term comas can have a significant impact on a patient's families. Families of coma victims often have idealized images of the outcome based on Hollywood movie depictions of coma. Adjusting to the realities of ventilators, feeding tubes, bedsores, and muscle wasting may be difficult. Treatment decision often involve complex ethical choices and can strain family dynamics.