Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
          
        
Neuroimaging like MRI is important. However, there was considerable intrafamilial variability regarding neuroimaging, with some individuals showing normal MRI findings. Early individual prognosis of such autosomal recessive cerebellar ataxias is not possible from early developmental milestones, neurological signs, or neuroimaging.
Clinical diagnosis is conducted on individuals with age onset between late teens and late forties who show the initial characteristics for the recessive autosomal cerebellar ataxia.
The following tests are performed:
- MRI brain screening for cerebellum atrophy.
- Molecular genetic testing for SYNE-1 sequence analysis.
- Electrophysiologic studies for polyneurotherapy
- Neurological examination
Prenatal diagnosis and preimplantation genetic diagnosis (PGD) can be performed to identify the mothers carrying the recessive genes for cerebellar ataxia.
Different types of ataxia:
- congenital ataxias (developmental disorders)
- ataxias with metabolic disorders
- ataxias with a DNA repair defect
- degenerative ataxias
- ataxia associated with other features.
In diagnosing autosomal dominant cerebellar ataxia the individuals clinical history or their past health examinations, a current physical examination to check for any physical abnormalities, and a genetic screening of the patients genes and the genealogy of the family are done. The large category of cerebellar ataxia is caused by a deterioration of neurons in the cerebellum, therefore magnetic resonance imaging (MRI) is used to detect any structural abnormality such as lesions which are the primary cause of the ataxia. Computed tomography (CT) scans can also be used to view neuronal deterioration, but the MRI provides a more accurate and detailed picture.
Three dimensional (3D) T1W, Axial, coronal, sagittal imaging is excellent for differentiation between gray matter and white matter acquisition of high-resolution anatomic information.T2W, Axial and coronal imaging for acquisition of high-resolution anatomic information; delineation of cortex, white matter, and gray matter nuclei. Diffusion tensor, axial imaging is used for evaluation of white matter microstructural integrity, identification of white matter tracts. CISS, axial + MPR imaging for evaluation of cerebellar folia, cranial nerves, ventricles, and foramina. Susceptibility weighted axial scan for Identification and characterization of hemorrhage, blood products, calcification, and iron accumulation.
Diagnosis of MSA can be challenging because there is no test that can definitively make or confirm the diagnosis in a living patient. Clinical diagnostic criteria were defined in 1998 and updated in 2007. Certain signs and symptoms of MSA also occur with other disorders, such as Parkinson's disease, making the diagnosis more difficult.
Both MRI and CT scanning frequently show a decrease in the size of the cerebellum and pons in those with cerebellar features. The putamen is hypodense on T2-weighted MRI and may show an increased deposition of iron in Parkinsonian form. In cerebellar form, a "hot cross" sign has been emphasized; it reflects atrophy of the pontocereballar fibers that manifest in T2 signal intensity in atrophic pons.
A definitive diagnosis can only be made pathologically on finding abundant glial cytoplasmic inclusions in the central nervous system.
Brain MRI shows vermis atrophy or hypoplasic. Cerebral and cerebellar atrophy with white matter changes in some cases.
Diagnosis is suspected clinically and family history, neuroimaging and genetic study helps to confirm Behr Syndrome.
There is no known prevention of spinocerebellar ataxia. Those who are believed to be at risk can have genetic sequencing of known SCA loci performed to confirm inheritance of the disorder.
Diffuse, symmetric white matter abnormalities were demonstrated by magnetic resonance imaging (MRI) suggesting that Behr syndrome may represent a disorder of white matter associated with an unknown biochemical abnormality.
A detailed family history should be obtained from at least three generations. In particularly a history to determine if there has been any neonatal and childhood deaths: Also a way to determine if any one of the family members exhibit any of the features of the multi-system disease. Specifically if there has been a maternal inheritance, when the disease is transmitted to females only, or if there is a family member who experienced a multi system involvement such as: Brain condition that a family member has been record to have such asseizures, dystonia, ataxia, or stroke like episodes.The eyes with optic atrophy, the skeletal muscle where there has been a history of myalgia, weakness or ptosis. Also in the family history look for neuropathy and dysautonomia, or observe heart conditions such ascardiomyopathy. The patients history might also exhibit a problem in their kidney, such as proximal nephron dysfunction. An endocrine condition, for example diabetes and hypoparathyroidism. The patient might have also had gastrointestinal condition which could have been due to liver disease, episodes of nausea or vomiting. Multiple lipomas in the skin, sideroblastic anemia and pancytopenia in the metabolic system or short stature might all be examples of patients with possible symptoms of MERRF disease.
There is no known prevention of spinocerebellar ataxia. Those who are believed to be at risk can have genetic sequencing of known SCA loci performed to confirm inheritance of the disorder.
Blood tests usually come back normal in affected individuals, so they do not serve as a reliable means of diagnosis. Blood tests can show low serum ferritin levels. However, this is unreliable as method of diagnosis, as some patients show typical serum ferritin levels even at the latest stages of neuroferritinopathy. Cerebral spinal fluid tests also are typically normal.
Ferritin found in the skin, liver, kidney, and muscle tissues may help in diagnosing neuroferritinopathy. More cytochrome c oxidase-negative fibers are also often found in the muscle biopsies of affected individuals.
In terms of a cure there is currently none available, however for the disease to manifest itself, it requires mutant gene expression. Manipulating the use of protein homoestasis regulators can be therapuetic agents, or a treatment to try and correct an altered function that makes up the pathology is one current idea put forth by Bushart, et al. There is some evidence that for SCA1 and two other polyQ disorders that the pathology can be reversed after the disease is underway. There is no effective treatments that could alter the progression of this disease, therefore care is given, like occupational and physical therapy for gait dysfunction and speech therapy.
Genetic testing can confirm a neuroferritinopathy diagnosis. A diagnosis can be made by analyzing the protein sequences of affected individuals and comparing them to known neuroferritinopathy sequences.
The diagnosis varies from individual to individual, each is evaluated and diagnosed according to their age, clinical phenotype and pressed inheritance pattern. If the Individual has been experiencing myoclonus the doctor will run a series of genetic studies to determine if its a mitochondrial disorder.
The molecular genetic studies are run to identify the reason of for the mutations underlying the mitochondrial dysfunction. This approach will avoid the need for a muscle biopsy or an exhaustive metabolic evaluation. After the sequencing the mitochondrial genomes, four points mutations in the genome can be identified which are associated with MERRF: A8344G, T8356C, G8361A, and G8363A. The point mutation A8344G is mostly associated with MERRF, in a study published by Paul Jose Lorenzoni from the Department of neurology at University of Panama stated that 80% of the patients with MERRF disease exhibited this point mutation. The remaining mutations only account for 10% of cases, and the remaining 10% of the patients with MERRF did not have an identifiable mutation in the mitochondrial DNA.
If a patient does not exhibit mitochondrial DNA mutations, there are other ways that they can be diagnosed with MERRF. They can go through computed tomography (CT) or magnetic resonance imaging (MRI).The classification for the severity of MERRF syndrome is difficult to distinguish since most individuals will exhibit multi-symptoms. For children with complex neurologic or multi-system involvement, as the one described below, is often necessary.
Acute Cerebellar ataxia is a diagnosis of exclusion. Urgent CT scan is necessary to rule out cerebellar tumor or hemorrhage as cause of the ataxia; however in acute cerebellar ataxia, the CT will be normal. CSF studies are normal earlier in the course of disease. Later on CSF shows moderate elevation of proteins.
There is currently no cure for SCA 6; however, there are supportive treatments that may be useful in managing symptoms.
Since lateral medullary syndrome is often caused by a stroke, diagnosis is time dependent. Diagnosis is usually done by assessing vestibular-related symptoms in order to determine where in the medulla that the infarction has occurred. Head Impulsive Nystagmus Test of Skew (HINTS) examination of oculomotor function is often performed, along with computed tomography (CT) or magnetic resonance imaging (MRI) to assist in stroke detection. Standard stroke assessment must be done to rule out a concussion or other head trauma.
Detection of the disorder is possible with an organic acid analysis of the urine. Patients with SSADH deficiency will excrete high levels of GHB but this can be difficult to measure since GHB has high volatility and may be obscured on gas chromatography or mass spectrometry studies by a high urea peak. Other GABA metabolites can also be identified in urine such as glycine. Finally, succinic semialdehyde dehydrogenase levels can be measured in cultured leukocytes of the patient. This occurs due to the accumulation of 4,5-dihydroxyhexanoic acid which is normally undetectable in mammalian tissues but is characteristic of SSADH deficiency. This agent can eventually compromise the pathways of fatty acid, glycine, and pyruvate metabolism, and then become detectable in patients' leukocytes. Such enzyme levels can also be compared to non-affected parents and siblings.
Supportive treatment is the only intervention for acute cerebellar ataxia of childhood. Symptoms may last as long as 2 or 3 months.
There is no standard course of treatment for cerebellar hypoplasia. Treatment depends upon the underlying disorder and the severity of symptoms. Generally, treatment is symptomatic and supportive. Balance rehabilitation techniques may benefit those experiencing difficulty with balance. Treatment is based on the underlying disorder and the symptom severity. Therapies include physical, occuptational, speech/language, visual, psych/ behavioral meds, special education.
MSA usually progresses more quickly than Parkinson's disease. There is no remission from the disease. The average remaining lifespan after the onset of symptoms in patients with MSA is 7.9 years. Almost 80% of patients are disabled within five years of onset of the motor symptoms, and only 20% survive past 12 years. Rate of progression differs in every case and speed of decline may vary widely in individual patients.
O’Sullivan and colleagues (2008) identified early autonomic dysfunction to be the most important early clinical prognostic feature regarding survival in MSA. Patients with concomitant motor and autonomic dysfunction within three years of symptom onset had a shorter survival duration, in addition to becoming wheelchair dependent and bed-ridden at an earlier stage than those who developed these symptoms after three years from symptom onset. Their study also showed that when patients with early autonomic dysfunction develop frequent falling, or wheelchair dependence, or severe dysphagia, or require residential care, there is a shorter interval from this point to death.
NPCA is a syndrome and can have diverse causes. It has a genetic basis and inheritance is considered to be autosomal recessive. However, autosomal dominant variety has also been reported. There may be familial balanced translocation t(8;20)(p22;q13) involved.
Microlissencephaly can be diagnosed by prenatal MRI. MRI is better than ultrasound when it comes to detecting microlissencephaly or MSGP prenatally.
The ideal time for proper prenatal diagnosis is between the 34th and 35th gestational week which is the time when the secondary gyration normally terminates. In microlissencephaly cases, the primary sulci would be unusually wide and flat while secondary sulci would be missing.
At birth, lissencephaly with a head circumference of less than minus three standard deviations (< –3 SD) is considered microlissencephaly.
Although genetic diagnosis in patients with MLIS is challenging, exome sequencing has been suggested to be a powerful diagnostic tool.