Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A 2014 study classified cases into three types—epidermolysis bullosa simplex (EBS), junctional epidermolysis bullosa (JEB), and dystrophic epidermolysis bullosa (DEB) -- and reviewed their times of death. The first two types tended to die in infancy and the last in early adulthood.
Epidermolysis bullosa can be diagnosed either by a skin (punch) biopsy at the edge of a wound with immunofluorescent mapping, or via blood sample and genetic testing.
One of the biggest risks factors faced by the affected foals is susceptibility to secondary infection. Within three to eight days after birth, the foal may die from infection or is euthanized for welfare reasons.
Mild forms of IBS should be diagnosable from appearance and patient history alone. Severe cases of IBS are hard to distinguish from mild EHK.
A skin biopsy shows a characteristic damaged layer in the upper spinous level of the skin. Again it may be difficult to distinguish from EHK.
The gene causing IBS is known and so a definite diagnosis can be given by genetic testing.
Biopsies of the skin may be performed to identify the cleavage that takes place at the dermal-epidermal junction. Another test that can aid in a diagnosis of JEB is the positive Nikolsky’s sign. By applying pressure to the skin, transverse movements can indicate slipping between the dermal and epidermal layers. An easier and more definitive test is through polymerase chain reaction (PCR). This method allows mane and tail samples to be genetically tested for the mutated genes that cause the condition. Hair samples must be pulled, not cut, with roots attached. The test can detect both JEB1 and JEB2. Testing costs around $35.00 US per sample.
The diagnosis of IP is established by clinical findings and occasionally by corroborative skin biopsy. Molecular genetic testing of the NEMO IKBKG gene (chromosomal locus Xq28) reveals disease-causing mutations in about 80% of probands. Such testing is available clinically.
In addition, females with IP have skewed X-chromosome inactivation; testing for this can be used to support the diagnosis.
Many people in the past were misdiagnosed with a second type of IP, formerly known as IP1. This has now been given its own name - 'Hypomelanosis of Ito' (incontinentia pigmenti achromians). This has a slightly different presentation: swirls or streaks of hypopigmentation and depigmentation. It is "not" inherited and does not involve skin stages 1 or 2. Some 33–50% of patients have multisystem involvement — eye, skeletal, and neurological abnormalities. Its chromosomal locus is at Xp11, rather than Xq28.
The condition can be diagnosed via exam that reveals; generalized redness; thick, generally dark, scales that tend to form parallel rows of spines or ridges,especially near large joints; the skin is fragile and blisters easily following trauma; extent of blistering and amount of scale is variable
Usually, a common form of treatment for the condition is a type of hand cream which moisturises the hard skin. However, currently the condition is incurable.
Immunoprecipitation, immunoblotting and enzyme-link immunosorbent assay (ELISA)
Poot et al. 2013 determined that immunoprecipitation for antibodies against envoplakin and periplakin or alpha2-macroglobulin-like–1 is the most sensitive test. However, alpha2-macroglobulin-like-1 can also be detected in patients with toxic epidermal necrosis.
Treatment of manifestations: special hair care products to help manage dry and sparse hair; wigs; artificial nails; emollients to relieve palmoplantar hyperkeratosis.
Patients with high concentration of antibodies show intercellular, intraepidermal antibodies as well as along the dermoepidermal junction. Patients with low concentration of antibodies only present with them inside the cells (intercellular).
If the results are negative, perform the additional assays regardless. Cases have been confirmed that reported with initial negative DIF and IDIF tests.
There is no cure for IBS but in the future gene therapy may offer a cure.
Treatments for IBS generally attempt to improve the appearance of the skin and the comfort of the sufferer. This is done by exfoliating and increasing the moisture of the skin. Common treatments include:
- Emollients: moisturisers, petroleum jelly or other emolients are used, often several times a day, to increase the moisture of the skin.
- Baths: long baths (possibly including salt) several times a week are used to soften the skin and allow exfoliation.
- Exfoliating creams: creams containing keratolytics such as urea, salicylic acid and lactic acid may be useful.
- Antiseptic washes: antiseptics may be used to kill bacteria in the skin and prevent odour.
- Retenoids: very severe cases may use oral retinoids to control symptoms but these have many serious side effects including, in the case of IBS, increased blistering.
The challenge has always been how to deliver the siRNA using a topical method or retroviral vectors and ex vivo gene transfer. In 2011/12 a team at Northwestern University claim to have solved the topical delivery of siRNA dilemma. Personalized siRNA can be delivered in a commercial moisturizer or phosphate-buffered saline, and do not require barrier disruption or transfection agents, such as liposomes, peptides, or viruses. "Topical application of nucleic acids offers many potential therapeutic advantages for suppressing genes in the skin, and potentially for systemic gene delivery. However, the epidermal barrier typically precludes entry of gene-suppressing therapy unless the barrier is disrupted. We now show that spherical nucleic acid nanoparticle conjugates (SNA-NCs), gold cores surrounded by a dense shell of highly oriented, covalently immobilized siRNA, freely penetrate almost 100% of keratinocytes in vitro, mouse skin, and human epidermis within hours after application."
This new discovery may soon offer hope to all suffering from mono-genetic diseases such as EHK. This may lead to promising personalized, topically delivered gene therapy of cutaneous tumors, skin inflammation, and dominant negative genetic skin disorders.
UPDATE: OCTOBER 2014
As of late, Paller reports "we are using a new nanotechnology-based technique called 'spherical nucleic acids' (SNAs) to suppress the production of the abnormal keratin 10 gene that is the most common change leading to epidermolytic ichthyosis. We continue to screen candidate SNAs to find a few that clearly suppress the abnormal keratin 10 gene much more than the normal keratin 10 gene. In the meantime, we have developed several tools towards this effort, which can also be used by other researchers. Most recently we've developed a special 'lentivirus reporter construct' in which we can see through changes in fluorescence whether or not our SNA works."
Dr. Paller and her team recently received more good news with regard to progressing their research. "We just received a grant from the National Institutes of Health (NIH) to continue this effort based on our preliminary data collected with FIRST's funding support. FIRST has been instrumental in furthering our research efforts related to ichthyosis," she said.
The disease often goes undiagnosed for several years, as it is sometimes not recognized and misdiagnosed as thrush or other problems and not correctly diagnosed until the patient is referred to a specialist when the problem does not clear up.
A biopsy of the affected skin can be done to confirm diagnosis. When a biopsy is done, hyperkeratosis, atrophic epidermis, sclerosis of dermis and lymphocyte activity in dermis are histological findings associated with LS. The biopsies are also checked for signs of dysplasia.
It has been noted that clinical diagnosis of LS can be "almost unmistakable" and therefore a biopsy may not be necessary.
Epidermolysis bullosa dystrophica or dystrophic EB (DEB) is an inherited disease affecting the skin and other organs.
"Butterfly child" is the colloquial name for a child born with the disease, as their skin is seen to be as delicate and fragile as that of a butterfly.
In 2015, an Italian team of scientists, led by Michele De Luca at the University of Modena, successfully treated a seven-year-old Syrian boy who had lost 80% of his skin. The boy's family had fled Syria for Germany in 2013. Upon seeking treatment in Germany, he had lost the epidermis from almost his entire body, with only his head and a patch on his left leg remaining. The group of Italian scientists had previously pioneered a technique to regenerate healthy skin in the laboratory. They used this treatment on the boy by taking a sample from his remaining healthy skin and then genetically modifying the skin cells, using a virus to deliver a healthy version of the LAMB3 gene into the nuclei. The patient underwent two operations in autumn 2015, where the new epidermis was attached. The graft had integrated into the lower layers of skin within a month, curing the boy. The introduction of genetic changes could increase the chances of skin cancer in other patients, but if the treatment is deemed safe in the long term, scientists believe the approach could be used to treat other skin disorders.
These include:
- "Generalized atrophic benign epidermolysis bullosa" is a skin condition that is characterized by onset at birth, generalized blisters and atrophy, mucosal involvement, and thickened, dystrophic, or absent nails.
- "Mitis junctional epidermolysis bullosa" (also known as "Nonlethal junctional epidermolysis bullosa") is a skin condition characterized by scalp and nail lesions, also associated with periorificial nonhealing erosions. Mitis junctional epidermolysis bullosa is most commonly seen in children between the ages of 4 and 10 years old.
- "Cicatricial junctional epidermolysis bullosa" is a skin condition characterized by blisters that heal with scarring. It was characterized in 1985.
There does not yet exist a specific treatment for IP. Treatment can only address the individual symptoms.
The deficiency in anchoring fibrils impairs the adherence between the epidermis and the underlying dermis. The skin of DEB patients is thus highly susceptible to severe blistering.Collagen VII is also associated with the epithelium of the esophageal lining, and DEB patients may suffer from chronic scarring, webbing, and obstruction of the esophagus. Affected individuals are often severely malnourished due to trauma to the oral and esophageal mucosa and require feeding tubes for nutrition. They also suffer from iron-deficiency anemia of uncertain origin, which leads to chronic fatigue.
Open wounds on the skin heal slowly or not at all, often scarring extensively, and are particularly susceptible to infection. Many individuals bathe in a bleach and water mixture to fight off these infectionsThe chronic inflammation leads to errors in the DNA of the affected skin cells, which in turn causes squamous cell carcinoma (SCC). The majority of these patients die before the age of 30, either of SCC or complications related to DEB.
The chronic inflammatory state seen in recessive dystrophic epidermolysis bullosa (RDEB) may cause Small fiber peripheral neuropathy (SFN).; RDEB patients have reported the sensation of pain in line with neuropathic pain qualities.
X-ray applications on most cases have brought about little outcome in most of the published case reports. As a consequence, a certain number of authors consider acrogeria mainly as a cutaneous affection, but the bone alterations are well described as part of the syndrome.
For patients who show typical alterations of acrogeria and metageria, in a concomitant way, the single term of "Acrometageria" has been proposed, which can refer to the widest spectrum of premature ageing syndromes.
However, this concept is still not generally accepted in the medical literature.As these are extremely rare syndromes, all sharing an aspect of aging skin similar to progeria, they are also called progeroid syndromes, from time to time.
HED2 is suspected after infancy on the basis of physical features in most affected individuals. GJB6 is the only gene known to be associated with HED2. Targeted mutation analysis for the four most common GJB6 mutations is available on a clinical basis and detects mutations in approximately 100% of affected individuals. Sequence analysis is also available on a clinical basis for those in whom none of the four known mutations is identified.
Lethal acantholytic epidermolysis bullosa is a fatal genetic skin disorder caused by mutations in DSP
Epidermolysis bullosa simplex may be divided into multiple types:
There is currently no specific treatment available for either of these so-called progeroid syndromes. With this in mind, what is most important when making a differential diagnosis with them is based on the prognosis, which appears to be far better in acrogeria.
Epidermolysis bullosa simplex (EBS),is a disorder resulting from mutations in the genes encoding keratin 5 or keratin 14.
Blister formation of EBS occurs at the dermoepidermal junction. Sometimes EBS is called "epidermolytic".