Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
          
        
Diagnosing CVI is difficult. A diagnosis is usually made when visual performance is poor but it is not possible to explain this from an eye examination. Before CVI was widely known among professionals, some would conclude that the patient was faking their problems or had for some reason engaged in self-deception. However, there are now testing techniques that do not depend on the patient's words and actions, such as fMRI scanning, or the use of electrodes to detect responses to stimuli in both the retina and the brain. These can be used to verify that the problem is indeed due to a malfunction of the visual cortex and/or the posterior visual pathway.
A patient with cortical blindness has no vision but the response of his/her pupil to light is intact (as the reflex does not involve the cortex). Therefore, one diagnostic test for cortical blindness is to first objectively verify the optic nerves and the non-cortical functions of the eyes are functioning normally. This involves confirming that patient can distinguish light/dark, and that his/her pupils dilate and contract with light exposure. Then, the patient is asked to describe something he/she would be able to recognize with normal vision. For example, the patient would be asked the following:
- "How many fingers am I holding up?"
- "What does that sign (on a custodian's closet, a restroom door, an exit sign) say?"
- "What kind of vending machine (with a vivid picture of a well-known brand name on it) is that?"
Patients with cortical blindness will not be able to identify the item being questioned about at all or will not be able to provide any details other than color or perhaps general shape. This indicates that the lack of vision is neurological rather than ocular. It specifically indicates that the occipital cortex is unable to correctly process and interpret the intact input coming from the retinas.
Fundoscopy should be normal in cases of cortical blindness. Cortical blindness can be associated with visual hallucinations, denial of visual loss (Anton–Babinski syndrome), and the ability to perceive moving but not static objects. (Riddoch syndrome).
It is important that people be examined by someone specializing in low vision care prior to other rehabilitation training to rule out potential medical or surgical correction for the problem and to establish a careful baseline refraction and prescription of both normal and low vision glasses and optical aids. Only a doctor is qualified to evaluate visual functioning of a compromised visual system effectively. The American Medical Association provides an approach to evaluating visual loss as it affects an individual's ability to perform activities of daily living.
Screening adults who have no symptoms is of uncertain benefit.
Visual impairment has the ability to create consequences for health and well being. Visual impairment is increasing especially among older people. It is recognized that those individuals with visual impairment are likely to have limited access to information and healthcare facilities, and may not receive the best care possible because not all health care professionals are aware of specific needs related to vision.
- A prerequisite of effective health care could very well be having staff that are aware that people may have problems with vision.
- Communication and different ways of being able to communicate with visually impaired clients must be tailored to individual needs and available at all times.
The prognosis of a patient with acquired cortical blindness depends largely on the original cause of the blindness. For instance, patients with bilateral occipital lesions have a much lower chance of recovering vision than patients who suffered a transient ischemic attack or women who experienced complications associated with eclampsia. In patients with acquired cortical blindness, a permanent complete loss of vision is rare. The development of cortical blindness into the milder cortical visual impairment is a more likely outcome. Furthermore, some patients regain vision completely, as is the case with transient cortical blindness associated with eclampsia and the side effects of certain anti-epilepsy drugs.
Recent research by Krystel R. Huxlin and others on the relearning of complex visual motion following V1 damage has offered potentially promising treatments for individuals with acquired cortical blindness. These treatments focus on retraining and retuning certain intact pathways of the visual cortex which are more or less preserved in individuals who sustained damage to V1. Huxlin and others found that specific training focused on utilizing the "blind field" of individuals who had sustained V1 damage improved the patients' ability to perceive simple and complex visual motion. This sort of 'relearning' therapy may provide a good workaround for patients with acquired cortical blindness in order to better make sense of the visual environment.
In the United States, testing for "horizontal gaze nystagmus" is one of a battery of field sobriety tests used by police officers to determine whether a suspect is driving under the influence of alcohol. The test involves observation of the suspect's pupil as it follows a moving object, noting
1. lack of smooth pursuit,
2. distinct and sustained nystagmus at maximum deviation, and
3. the onset of nystagmus prior to 45 degrees.
The horizontal gaze nystagmus test has been highly criticized and major errors in the testing methodology and analysis found. However, the validity of the horizontal gaze nystagmus test for use as a field sobriety test for persons with a blood alcohol level between 0.04–0.08 is supported by peer reviewed studies and has been found to be a more accurate indication of blood alcohol content than other standard field sobriety tests.
Symptoms of CVI usually include several (but not necessarily all) of the following:
- The person with CVI exhibits variable vision. Visual ability can change from one day to the next but it can also fluctuate from minute to minute, especially when the person is tired. When undertaking critical activities, people with CVI should be prepared for their vision to fluctuate, by taking precautions such as always carrying a white cane even if they don't always use it to the full, or always having very large print available, just in case it's needed. (For example, consider the consequences of losing vision while giving a public speech). Managing fatigue can reduce fluctuations but does not eliminate them. Changes in environment, even minor, are mostly responsible for what appears to be variable vision.
- One eye may perform significantly worse than the other, and depth perception can be very limited (although not necessarily zero).
- The field of view may be severely limited. The best vision might be in the centre (like tunnel vision) but more often it is at some other point, and it is difficult to tell what the person is really looking at. Note that if the person also has a common ocular visual impairment such as nystagmus then this can also affect which part(s) of the visual field are best. (Sometimes there exists a certain gaze direction which minimises the nystagmus, called a "null point.")
- Even though the field of view may be very narrow indeed, it is often possible for the person to detect and track movement. Movement is handled by the 'V5' part of the visual cortex, which may have escaped the damage. Sometimes a moving object can be seen better than a stationary one; at other times the person can sense movement but cannot identify what is moving. (This can be annoying if the movement is prolonged, and to escape the annoyance the person may have to either gaze right at the movement or else obscure it.) Sometimes it is possible for a person with CVI to see things while moving their gaze around that they didn't detect when stationary. However, movement that is too fast can be hard to track; some people find that fast-moving objects "disappear." Materials with reflective properties, which can simulate movement, may be easier for a person with CVI to see. However, too many reflections can be confusing (see cognitive overload).
- Some objects may be easier to see than others. For example, the person may have difficulty recognising faces or facial expressions but have fewer problems with written materials. This is presumably due to the different way that the brain processes different things.
- Colour and contrast are important. The brain's colour processing is distributed in such a way that it is more difficult to damage, so people with CVI usually retain full perception of colour. This can be used to advantage by colour-coding objects that might be hard to identify otherwise. Sometimes yellow and red objects are easier to see, as long as this does not result in poor contrast between the object and the background.
- People with CVI strongly prefer a simplified view. When dealing with text, for example, the person might prefer to see only a small amount of it at once. People with CVI frequently hold text close to their eyes, both to make the text appear larger and to minimise the amount they must look at. This also ensures that important things such as letters are not completely hidden behind any scotomas (small defects in parts of the functioning visual field), and reduces the chances of getting lost in the text. However, the simplification of the view should not be done in such a way that it requires too rapid a movement to navigate around a large document, since too much motion can cause other problems (see above).
- In viewing an array of objects, people with CVI can more easily see them if they only have to look at one or two at a time. People with CVI also see familiar objects more easily than new ones. Placing objects against a plain background also makes them easier for the person with CVI to see.
- For the same reason (simplified view), the person may also dislike crowded rooms and other situations where their functioning is dependent on making sense of a lot of visual 'clutter'.
- Visual processing can take a lot of effort. Often the person has to make a conscious choice about how to divide mental effort between making sense of visual data and performing other tasks. For some people, maintaining eye contact is difficult, which can create problems in Western culture (for example, bonding can be difficult for some parents who have an infant with CVI, and lack of contact in an older child can cause others to regard him or her with suspicion).
- It can also be difficult for some people with CVI to look at an object and reach for it at the same time. Looking and reaching are sometimes accomplished as two separate acts: look, then look away and reach.
- People with CVI can sometimes benefit from a form of blindsight, which manifests itself as a kind of awareness of one's surroundings that cannot consciously be explained (for example, the person correctly guesses what they should do in order to avoid an obstacle but does not actually see that obstacle). However, this cannot be relied on to work all the time. In contrast, some people with CVI exhibit spatial difficulties and may have trouble moving about in their environment.
- Approximately one third of people with CVI have some photophobia. It can take longer than usual to adjust to large changes in light level, and flash photography can be painful. On the other hand, CVI can also in some cases cause a desire to gaze compulsively at light sources, including such things as candle flames and fluorescent overhead lights. The use of good task lighting (especially low-temperature lamps which can be placed at very close range) is often beneficial.
- Although people (with or without CVI) generally assume that they see things as they really are, in reality the brain may be doing a certain amount of guessing and "filling in", which is why people sometimes think they see things that turn out on closer inspection not to be what they seemed. This can occur more frequently when a person has CVI. Hence, a person with CVI can look at an optical illusion or abstract picture and perceive something that is significantly different from what a person without CVI will perceive.
The presence of CVI does not necessarily mean that the person's brain is damaged in any other way, but it can often be accompanied by other neurological problems, the most common being epilepsy.
The diagnosis of childhood blindness is done via methods to ascertain the degree of visual impairment in the affected child doing so via "dilating eye drops" and the proceeding eye exam.
Vitamin A supplementation plays an important role, specifically vitamin A deficiency is a top causes of preventable childhood blindness. Though in measles cases, the administration of the vitamin to offset visual impairment has not been proven effective, as of yet.
All newborns should have screening eye examinations, including an evaluation of the red reflexes.
- The red reflex test is best performed in a darkened room and involves shining a bright direct ophthalmoscope into both eyes simultaneously from a distance of 1– 2 ft. This test can be used for routine ocular screening by nurses, pediatricians, family practitioners, and optometrists.
- Retinoscopy through the child's undilated pupil is helpful for assessing the potential visual significance of an axial lens opacity in a pre-verbal child. Any central opacity or surrounding cortical distortion greater than 3 mm can be assumed to be visually significant.
- Laboratory Tests : In contrast to unilateral cataracts, bilateral congenital cataracts may be associated with many systemic and metabolic diseases. A basic laboratory evaluation for bilateral cataracts of unknown cause in apparently healthy children includes:
Homonymous hemianopsia secondary to posterior cerebral artery occlusion – may result in syndromes of memory impairment, opposite visual field loss (homonymous hemianopsia), and sometimes hemisensory deficits.
The PCA supplies the occipital lobe and the medial portion of the temporal lobe.
Infarction of occipital cortex typically causes macular sparing hemianopias due to dual blood supply.
Occlusion of the calcarine artery that results in infarction of the superior part of the occipital lobe causes a lower peripheral visual field defect.
Posterior cerebral artery penetrating branch occlusion may result in infarction of the posterior capsule, causing hemisensory loss, and (if low enough) a transient hemianopia may also occur.
Congenital nystagmus has traditionally been viewed as non-treatable, but medications have been discovered in recent years that show promise in some patients. In 1980, researchers discovered that a drug called baclofen could effectively stop periodic alternating nystagmus. Subsequently, gabapentin, an anticonvulsant, was found to cause improvement in about half the patients who received it to relieve symptoms of nystagmus. Other drugs found to be effective against nystagmus in some patients include memantine, levetiracetam, 3,4-diaminopyridine (available in the US to eligible patients with downbeat nystagmus at no cost under an expanded access program), 4-aminopyridine, and acetazolamide. Several therapeutic approaches, such as contact lenses, drugs, surgery, and low vision rehabilitation have also been proposed. For example, it has been proposed that mini-telescopic eyeglasses suppress nystagmus.
Surgical treatment of Congenital Nystagmus is aimed at improving the abnormal head posture, simulating artificial divergence or weakening the horizontal recti muscles. Clinical trials of a surgery to treat nystagmus (known as tenotomy) concluded in 2001. Tenotomy is now being performed regularly at numerous centres around the world. The surgery developed by Louis F. Dell'Osso Ph.D. aims to reduce the eye shaking (oscillations), which in turn tends to improve visual acuity.
Acupuncture has conflicting evidence as to having beneficial effects on the symptoms of nystagmus. Benefits have been seen in treatments where acupuncture points of the neck were used, specifically points on the sternocleidomastoid muscle. Benefits of acupuncture for treatment of nystagmus include a reduction in frequency and decreased slow phase velocities which led to an increase in foveation duration periods both during and after treatment. By the standards of evidence-based medicine, the quality of these studies can be considered poor (for example, Ishikawa has a study sample size of just six, is unblinded and without proper control), and given high quality studies showing that acupuncture has no effect beyond placebo, the results of these studies have to be considered clinically irrelevant until higher quality studies are produced.
Physical therapy or Occupational therapy is also used to treat nystagmus. Treatment consist of learning compensatory strategies to take over for the impaired system.
Prisms or "field expanders" that bend light have been prescribed for decades in patients with hemianopsia. Higher power Fresnel ("stick-on") prisms are commonly employed because they are thin and light weight, and can be cut and placed in different positions on a spectacle lens.
Peripheral prism spectacles expand the visual field of patients with hemifield visual defects and have the potential to improve visual function and mobility. Prism spectacles incorporate higher power prisms, with variable shapes and designs. The Gottlieb button prism, and the Peli superior and inferior horizontal bands are some proprietary examples of prism glasses. These high power prisms "create" artificial peripheral vision into the non-blind field for obstacle avoidance and motion detection.
The diagnosis usually starts with a dilated examination of the retina, followed with confirmation by optical coherence tomography and fluorescein angiography. The angiography test will usually show one or more fluorescent spots with fluid leakage. In 10%-15% of the cases these will appear in a "classic" smoke stack shape. Differential diagnosis should be immediately performed to rule out retinal detachment, which is a medical emergency.
A clinical record should be taken to keep a timeline of the detachment. An Amsler grid can be useful in documenting the precise area of the visual field involved. The affected eye will sometimes exhibit a refractive spectacle prescription that is more far-sighted than the fellow eye due to the decreased focal length caused by the raising of the retina.
Indocyanine green angiography can be used to assess the health of the retina in the affected area which can be useful in making a treatment decision.
Oscillopsia is a visual disturbance in which objects in the visual field appear to oscillate. The severity of the effect may range from a mild blurring to rapid and periodic jumping. Oscillopsia is an incapacitating condition experienced by many patients with neurological disorders. It may be the result of ocular instability occurring after the oculomotor system is affected, no longer holding images steady on the retina. A change in the magnitude of the vestibulo-ocular reflex due to vestibular disease can also lead to oscillopsia during rapid head movements. Oscillopsia may also be caused by involuntary eye movements such as nystagmus, or impaired coordination in the visual cortex (especially due to toxins) and is one of the symptoms of superior canal dehiscence syndrome. Sufferers may experience dizziness and nausea. Oscillopsia can also be used as a quantitative test to document aminoglycoside toxicity. Permanent oscillopsia can arise from an impairment of the ocular system that serves to maintain ocular stability. Paroxysmal oscillopsia can be due to an abnormal hyperactivity in the peripheral ocular or vestibular system.
In general, the younger the child, the greater the urgency in removing the cataract, because of the risk of amblyopia. For optimal visual development in newborns and young infants, a visually significant unilateral congenital cataract should be detected and removed before age 6 weeks, and visually significant bilateral congenital cataracts should be removed before age 10 weeks.
Some congenital cataracts are too small to affect vision, therefore no surgery or treatment will be done. If they are superficial and small, an ophthalmologist will continue to monitor them throughout a patient's life. Commonly, a patient with small congenital cataracts that do not affect vision will eventually be affected later in life; generally this will take decades to occur.
ONH is diagnosed by ophthalmoscopic examination. Patients with ONH exhibit an optic nerve that appears smaller than normal and different in appearance from small optic nerves caused by other eye conditions such as optic (nerve) atrophy.
DM:DD ratio has proven to be a clinically useful measurement to help diagnose optic nerve hypoplasia. Where "DM" represents the distance from Disk to Macula, and "DD" represents Disc Diameter.
The mean disc diameter (DD) is (Vertical diameter of Disc+Horizontal diameter of Disc)divided by 2. The distance between the center of the disc and the macula is DM.
"Interpretation:" When the ratio of DM to DD is greater than 3, ONH is suspected, and when it is greater than 4, Optic Nerve Hypoplasia is definite.
Binasal hemianopsia (or binasal hemianopia) is the medical description of a type of partial blindness where vision is missing in the inner half of both the right and left visual field. It is associated with certain lesions of the eye and of the central nervous system, such as congenital hydrocephalus.
One treatment thought to be effective is the repeated exposure to a particular face or object, where impaired perception may be reorganized in memory, leading to improvement on tests of imagery relative to tests of perception. The key factor for this type of treatment to be successful is a regular and consistent exposure, which will lead to improvements in the long run. Results may not be seen right away, but are eventually possible.
The fundus exam via ophthalmoscopy is essentially normal early on in cone dystrophy, and definite macular changes usually occur well after visual loss. Fluorescein angiography (FA) is a useful adjunct in the workup of someone suspected to have cone dystrophy, as it may detect early changes in the retina that are too subtle to be seen by ophthalmoscope. For example, FA may reveal areas of hyperfluorescence, indicating that the RPE has lost some of its integrity, allowing the underlying fluorescence from the choroid to be more visible. These early changes are usually not detected during the ophthalmoscopic exam.
The most common type of macular lesion seen during ophthalmoscopic examination has a bull’s-eye appearance and consists of a doughnut-like zone of atrophic pigment epithelium surrounding a central darker area. In another, less frequent form of cone dystrophy there is rather diffuse atrophy of the posterior pole with spotty pigment clumping in the macular area. Rarely, atrophy of the choriocapillaris and larger choroidal vessels is seen in patients at an early stage. The inclusion of fluorescein angiography in the workup of these patients is important since it can help detect many of these characteristic ophthalmoscopic features. In addition to the retinal findings, temporal pallor of the optic disc is commonly observed.
As expected, visual field testing in cone dystrophy usually reveals a central scotoma. In cases with the typical bull’s-eye appearance, there is often relative central sparing.
Because of the wide spectrum of fundus changes and the difficulty in making the diagnosis in the early stages, electroretinography (ERG) remains the best test for making the diagnosis. Abnormal cone function on the ERG is indicated by a reduced single-flash and flicker response when the test is carried out in a well-lit room (photopic ERG). The relative sparing of rod function in cone dystrophy is evidenced by a normal scotopic ERG, i.e. when the test is carried out in the dark. In more severe or longer standing cases, the dystrophy involves a greater proportion of rods with resultant subnormal scotopic records. Since cone dystrophy is hereditary and can be asymptomatic early on in the disease process, ERG is an invaluable tool in the early diagnosis of patients with positive family histories.
Cone dystrophy in general usually occurs sporadically. Hereditary forms are usually autosomal dominant, and instances of autosomal recessive and X-linked inheritance also occur.
In the differential diagnosis, other macular dystrophies as well as the hereditary optic atrophies must be considered. Fluorescent angiography, ERG, and color vision tests are important tools to help facilitate diagnosis in early stages.
Diagnosis of age-related macular degeneration rests on signs in the macula, irrespective of visual acuity. Diagnosis of AMD may include the following procedures and tests:
- The transition from dry to wet AMD can happen rapidly, and if it is left untreated can lead to legal blindness in as little as six months. To prevent this from occurring and to initiate preventative strategies earlier in the disease process, dark adaptation testing may be performed. A dark adaptometer can detect subclinical AMD at least three years earlier than it is clinically evident.
- There is a loss of contrast sensitivity, so that contours, shadows, and color vision are less vivid. The loss in contrast sensitivity can be quickly and easily measured by a contrast sensitivity test like Pelli Robson performed either at home or by an eye specialist.
- When viewing an Amsler grid, some straight lines appear wavy and some patches appear blank
- When viewing a Snellen chart, at least 2 lines decline
- Preferential hyperacuity perimetry changes (for wet AMD)
- In dry macular degeneration, which occurs in 85–90 percent of AMD cases, drusen spots can be seen in Fundus photography
- In wet macular degeneration, angiography can visualize the leakage of bloodstream behind the macula. Fluorescein angiography allows for the identification and localization of abnormal vascular processes.
- Using an electroretinogram, points in the macula with a weak or absent response compared to a normal eye may be found
- Farnsworth-Munsell 100 hue test and Maximum Color Contrast Sensitivity test (MCCS) for assessing color acuity and color contrast sensitivity
- Optical coherence tomography is now used by most ophthalmologists in the diagnosis and the follow-up evaluation of the response to treatment with antiangiogenic drugs.
There are currently no quantitative methods for diagnosing simultanagnosia. To establish the presence of simultanagnosic symptoms, patients are asked to describe complex visual displays, such as the commonly used "Boston Cookie Theft" picture, which is a component of the Boston Diagnostic Aphasia Examination. In the picture, the sink in the kitchen is overflowing as a boy and a girl attempt to steal cookies from the cookie jar without their mother noticing.
Patients take a clearly piecemeal approach to interpreting the scene by reporting isolated items from the image. For instance, a patient may report seeing a "boy," "stool," and a "woman." However, when asked to interpret the overall meaning of the picture, the patient fails to comprehend the global whole. Another picture used to assess visual impairments of patients with simultanagnosia is the "Telegraph Boy" picture. Upon examination of higher nervous system functions, patients display no general intellectual impairments.
Visual fields associated with chiasmal syndrome usually leads to an MRI. Contrast can delineate arterial aneurysms and will enhance most intrinsic chiasmal lesions. If a mass is confirmed on MRI, an endocrine panel can help determine if a pituitary adenoma is involved.
In patients with functional adenomas diagnosed by other means, visual field tests are a good screen to test for chiasmal involvement. Visual fields tests will delinate chiasmal syndromes because the missing fields will not cross the midline. Junctional scotomas classically show ipsilateral optic disc neuropathy with contralateral superotemporal defects. Bitemporal hemianopia with or without central scotoma is present if the lesions have affected the body of the chiasm. A posterior chiasm lesion should only produce defects on the temporal sides of the central visual field.
The diagnosis of toxic or nutritional optic neuropathy is usually established by a detailed medical history and careful eye examination. If the medical history clearly points to a cause, neuroimaging to rule out a compressive or infiltrative lesion is optional. However, if the medical history is atypical or does not clearly point to a cause, neuroimaging is required to rule out other causes and confirm the diagnosis. In most cases of suspected toxic or nutritional optic neuropathy that require neuroimaging, an MRI scan is obtained. Further testing, guided by the medical history and physical examination, can be performed to elucidate a specific toxin or nutritional deficiency as a cause of the optic neuropathy. Examples include blood testing for methanol levels or vitamin B levels.
In binasal hemianopsia, vision is missing in the inner (nasal or medial) half of both the right and left visual fields. Information from the nasal visual field falls on the temporal (lateral) retina. Those lateral retinal nerve fibers do not cross in the optic chiasm. Calcification of the internal carotid arteries can impinge the uncrossed, lateral retinal fibers leading to loss of vision in the nasal field.
Note: Clinical testing of visual fields (by confrontation) can produce a false positive result (particularly in inferior nasal quadrants).