Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Cerebral angiography and magnetic resonance imaging, family medical history, symptoms, a complete physical examination, and ultimately biopsy of the brain, are often required for the diagnosis. Also, many lab tests must be done for the diagnosis; tests may reveal anemia (a shortage of red blood cells), a high white blood cell count, a high platelet count, allergic reactions, immune complexes, antibodies (tools the body uses to fight off threats) and elevation of inflammatory markers. Another crucial part in the diagnosis of cerebral vasculitis is the use of imaging techniques. Techniques such as conventional digital subtraction angiography (DSA) and magnetic resonance imaging (MRI) are used to find and monitor cerebral involvement.
Treatment is first with many different high-dose steroids, namely glucocorticoids. Then, if symptoms do not improve additional immunosuppression such as cyclophosphamide are added to decrease the immune system's attack on the body's own tissues. Cerebral vasculitis is a very rare condition that is difficult to diagnose, and as a result there are significant variations in the way it is diagnosed and treated.
No specific lab tests exist for diagnosing polyarteritis nodosa. Diagnosis is generally based on the physical examination and a few laboratory studies that help confirm the diagnosis:
A patient is said to have polyarteritis nodosa if he or she has three of the 10 signs known as the 1990 American College of Rheumatology (ACR) criteria, when a radiographic or pathological diagnosis of vasculitis is made:
In polyarteritis nodosa, small aneurysms are strung like the beads of a rosary, therefore making "rosary sign" an important diagnostic feature of the vasculitis. The 1990 ACR criteria were designed for classification purposes only. Nevertheless, their good discriminatory performances, indicated by the initial ACR analysis, suggested their potential usefulness for diagnostic purposes as well. Subsequent studies did not confirm their diagnostic utility, demonstrating a significant dependence of their discriminative abilities on the prevalence of the various vasculitides in the analyzed populations. Recently, an original study, combining the analysis of more than 100 items used to describe patients' characteristics in a large sample of vasculitides with a computer simulation technique designed to test the potential diagnostic utility of the various criteria, proposed a set of eight positively or negatively discriminating items to be used as a screening tool for diagnosis in patients suspected of systemic vasculitis.
In this table: ANA = Antinuclear antibodies, CRP = C-reactive protein, ESR = Erythrocyte Sedimentation Rate, "ds"DNA = double-stranded DNA, ENA = extractable nuclear antigens, RNP = ribonucleoproteins; VDRL = Venereal Disease Research Laboratory
The microscopic examination of tissue (histology) gives the definitive diagnosis. The diagnostic histopathologic finding is intravascular cholesterol crystals, which are seen as cholesterol clefts in routinely processed tissue (embedded in paraffin wax). The cholesterol crystals may be associated with macrophages, including giant cells, and eosinophils.
The sensitivity of small core biopsies is modest, due to sampling error, as the process is often patchy. Affected organs show the characteristic histologic changes in 50-75% of the clinically diagnosed cases. Non-specific tissue findings suggestive of a cholesterol embolization include ischemic changes, necrosis and unstable-appearing complex atherosclerotic plaques (that are cholesterol-laden and have a thin fibrous cap). While biopsy findings may not be diagnostic, they have significant value, as they help exclude alternate diagnoses, e.g. vasculitis, that often cannot be made confidently based on clinical criteria.
A physical examination will demonstrate many of the features listed above.
Blood tests
- Complete blood count may reveal normocytic anemia and eventually thrombocytosis.
- Erythrocyte sedimentation rate will be elevated.
- C-reactive protein will be elevated.
- Liver function tests may show evidence of hepatic inflammation and low serum albumin levels.
Other optional tests include:
- Electrocardiogram may show evidence of ventricular dysfunction or, occasionally, arrhythmia due to myocarditis.
- Echocardiogram may show subtle coronary artery changes or, later, true aneurysms.
- Ultrasound or computerized tomography may show hydrops (enlargement) of the gallbladder.
- Urinalysis may show white blood cells and protein in the urine (pyuria and proteinuria) without evidence of bacterial growth.
- Lumbar puncture may show evidence of aseptic meningitis.
- Angiography was historically used to detect coronary artery aneurysms, and remains the gold standard for their detection, but is rarely used today unless coronary artery aneurysms have already been detected by echocardiography.
- Temporal artery biopsy
Treatment involves medications to suppress the immune system, including prednisone and cyclophosphamide. In some cases, methotrexate or leflunomide may be helpful. Some patients have also noticed a remission phase when a four-dose infusion of rituximab is used before the leflunomide treatment is begun. Therapy results in remissions or cures in 90% of cases. Untreated, the disease is fatal in most cases. The most serious associated conditions generally involve the kidneys and gastrointestinal tract. A fatal course usually involves gastrointestinal bleeding, infection, myocardial infarction, and/or kidney failure.
In case of remission, about 60% experience relapse within five years. In cases caused by hepatitis B virus, however, recurrence rate is only around 6%.
Lupus is a condition with no known cure. Lupus cerebritis however is treated by suppressing the autoimmune activity.
When it is caused by infections, treatment consists of medication that will primarily cure the infection. For inflammation, steroids can be used to bring down the swelling. If the swelling appears to have increased to a dangerous level, surgery may be needed to relieve pressure on the brain. The formation of an abscess also calls for surgery as it will be necessary to drain the abscess.
The diagnostic testing for vasculitis should be guided by the patient's history and physical exam. The clinician should ask about the duration, onset, and presence any associated symptoms such as weight loss or fatigue (that would indicate a systemic cause). It is important to distinguish between IgA and non-IgA vasculitis. IgA vasculitis is more likely to present with abdominal pain, bloody urine, and joint pain. In the case that the cause is not obvious, a reasonable initial workup would include a complete blood count, urinalysis, basic metabolic panel, fecal occult blood testing, erythrocyte sedimentation rate (ESR), and C-reactive protein level. Small vessel cutaneous vasculitis is a diagnosis of exclusion and requires ruling out systemic causes of the skin findings. Skin biopsy (punch or excisional) is the most definitive diagnostic test and should be performed with 48 hours of appearance of the vasculitis. A skin biopsy will be able to determine if the clinical findings are truly due to a vasculitis or due to some other cause.
Tests for inflammation (C-reactive protein and the erythrocyte sedimentation rate) are typically elevated, and abnormal liver enzymes may be seen. If the kidneys are involved, tests of renal function (such as urea and creatinine) are elevated. The complete blood count may show particularly high numbers of a type of white blood cell known as "eosinophils" (more than 0.5 billion per liter); this occurs in only 60-80% of cases, so normal eosinophil counts do not rule out the diagnosis. Examination of the urine may show red blood cells (occasionally in casts as seen under the microscope) and increased levels of protein; in a third of the cases with kidney involvement, eosinophils can also be detected in the urine. If vasculitis is suspected, complement levels may be determined as reduced levels are often encountered in vasculitis; complement is a group of proteins that forms part of the innate immune system. Complement levels are frequently reduced in cholesterol embolism, limiting the use of this test in the distinction between vasculitis and cholesterol embolism.
Kawasaki disease can only be diagnosed clinically (i.e., by medical signs and symptoms). No specific laboratory test exists for this condition. It is difficult to establish the diagnosis, especially early in the course of the illness, and frequently children are not diagnosed until they have seen several health-care providers. Many other serious illnesses can cause similar symptoms, and must be considered in the differential diagnosis, including scarlet fever, toxic shock syndrome, juvenile idiopathic arthritis, and childhood mercury poisoning (infantile acrodynia).
Classically, five days of fever plus four of five diagnostic criteria must be met to establish the diagnosis. The criteria are:
1. erythema of the lips or oral cavity or cracking of the lips
2. rash on the trunk
3. swelling or erythema of the hands or feet
4. red eyes (conjunctival injection)
5. swollen lymph node in the neck of at least 15 mm
Many children, especially infants, eventually diagnosed with Kawasaki disease, do not exhibit all of the above criteria. In fact, many experts now recommend treating for Kawasaki disease even if only three days of fever have passed and at least three diagnostic criteria are present, especially if other tests reveal abnormalities consistent with Kawasaki disease. In addition, the diagnosis can be made purely by the detection of coronary artery aneurysms in the proper clinical setting.
For diagnosis of NPSLE, it must be determined whether neuropsychiatric symptoms are indeed caused by SLE, whether they constitute a separate comorbid condition, or whether they are an adverse effect of disease treatment. In addition, onset of neuropsychiatric symptoms may happen prior to the diagnosis of lupus. Due to the lack of uniform diagnostic standards, statistics about NPSLE vary widely.
Tests which aid in diagnosis include MRI, electrophysiological studies, psychiatric evaluation, and autoantibody tests.
FDG positron emission tomography (PET) may be useful to detect the condition early. Other imaging studies including MRI, CT scans, and X-rays may reveal inflammation and/or damaged cartilage facilitating diagnosis.
It is useful to do a full set of pulmonary function tests, including inspiratory and expiratory flow-volume loops. Patterns consistent with either extrathoracic or intrathoracic obstruction (or both) may occur in this disease. Pulmonary function tests (flow-volume loops) provide a useful noninvasive means of quantifying and following the degree of extrathoracic airway obstruction in relapsing polychondritis.
Treatments are generally directed toward stopping the inflammation and suppressing the immune system. Typically, corticosteroids such as prednisone are used. Additionally, other immune suppression drugs, such as cyclophosphamide and others, are considered. In case of an infection, antimicrobial agents including cephalexin may be prescribed. Affected organs (such as the heart or lungs) may require specific medical treatment intended to improve their function during the active phase of the disease.
There is no specific pathological testing or technique available for the diagnosis of the disease, although the International Study Group criteria for the disease are highly sensitive and specific, involving clinical criteria and a pathergy test. Behçet's disease has a high degree of resemblance to diseases that cause mucocutaneous lesions such as "Herpes simplex" labialis, and therefore clinical suspicion should be maintained until all the common causes of oral lesions are ruled out from the differential diagnosis.
Visual acuity, or color vision loss with concurrent mucocutaneous lesions or systemic Behçet's disease symptoms should raise suspicion of optic nerve involvement in Behçet's disease and prompt a work-up for Behçet's disease if not previously diagnosed in addition to an ocular work-up. Diagnosis of Behçet's disease is based on clinical findings including oral and genital ulcers, skin lesions such as erythema nodosum, acne, or folliculitis, ocular inflammatory findings and a pathergy reaction. Inflammatory markers such ESR, and CRP may be elevated. A complete ophthalmic examination may include a slit lamp examination, optical coherence tomography to detect nerve loss, visual field examinations, fundoscopic examination to assess optic disc atrophy and retinal disease, fundoscopic angiography, and visual evoked potentials, which may demonstrate increased latency. Optic nerve enhancement may be identified on Magnetic Resonance Imaging (MRI) in some patients with acute optic neuropathy. However, a normal study does not rule out optic neuropathy. Cerebrospinal fluid (CSF) analysis may demonstrate elevated protein level with or without pleocytosis. Imaging including angiography may be indicated to identify dural venous sinus thrombosis as a cause of intracranial hypertension and optic atrophy.
The French Vasculitis Study Group has developed a five-point system ("five-factor score") that predicts the risk of death in Churg–Strauss syndrome using clinical presentations. These factors are:
- Reduced renal function (creatinine >1.58 mg/dl or 140 µmol/l)
- Proteinuria (>1 g/24h)
- Gastrointestinal hemorrhage, infarction, or pancreatitis
- Involvement of the central nervous system
- Cardiomyopathy
The lack of any of these factors indicates milder case, with a five-year mortality rate of 11.9%. The presence of one factor indicates severe disease, with a five-year mortality rate of 26%, and two or more indicate very severe disease: 46% five-year mortality rate.
Myelitis has an extensive differential diagnosis. The type of onset (acute versus subacute/chronic) along with associated symptoms such as the presence of pain, constitutional symptoms that encompass fever, malaise, weight loss or a cutaneous rash may help identify the cause of myelitis. In order to establish a diagnosis of myelitis, one has to localize the spinal cord level, and exclude cerebral and neuromuscular diseases. Also a detailed medical history, a careful neurologic examination, and imaging studies using magnetic resonance imaging (MRI) are needed. In respect to the cause of the process, further work-up would help identify the cause and guide treatment. Full spine MRI is warranted, especially with acute onset myelitis, to evaluate for structural lesions that may require surgical intervention, or disseminated disease. Adding gadolinium further increases diagnostic sensitivity. A brain MRI may be needed to identify the extent of central nervous system (CNS) involvement. Lumbar puncture is important for the diagnosis of acute myelitis when a tumoral process, inflammatory or infectious cause are suspected, or the MRI is normal or non-specific. Complementary blood tests are also of value in establishing a firm diagnosis. Rarely, a biopsy of a mass lesion may become necessary when the cause is uncertain. However, in 15–30% of people with subacute or chronic myelitis, a clear cause is never uncovered.
Diagnostic markers include eosinophil granulocytes and granulomas in affected tissue, and antineutrophil cytoplasmic antibodies (ANCA) against neutrophil granulocytes. The American College of Rheumatology 1990 criteria for diagnosis of Churg–Strauss syndrome lists these criteria:
- Asthma
- Eosinophilia, i.e. eosinophil blood count greater than 500/microliter, or hypereosinophilia, i.e. eosinophil blood count greater than 1,500/microliter
- Presence of mononeuropathy or polyneuropathy
- Unfixed pulmonary infiltrates
- Presence of paranasal sinus abnormalities
- Histological evidence of extravascular eosinophils
For classification purposes, a patient shall be said to have Churg–Strauss syndrome (CSS) if at least four of these six criteria are positive. The presence of any four or more of the six criteria yields a sensitivity of 85% and a specificity of 99.7%.
Surgical treatment of arterial manifestations of BD bears many pitfalls, since the obliterative endarteritis of vasa vasorum causes thickening of the medial layer and splitting of elastin fibers. Therefore, anastomotic pseudoaneurysms are likely to form, as well as pseudoaneurysms at the site of puncture in case of angiography or endovascular treatment; furthermore, early graft occlusion may occur.
For these reasons, invasive treatment should not be performed in the acute and active phases of the disease when inflammation is at its peak. The evaluation of disease’s activity is usually based on relapsing symptoms, ESR (erythrocyte sedimentation rate), and serum levels of CRP (C‐reactive protein).
Endovascular treatment can be an effective and safe alternative to open surgery, with less postoperative complications, faster recovery time, and reduced need for intensive care, while offering patency rates and procedural success rates comparable with those of surgery. This notwithstanding, long‐term results of endovascular treatment in BD are still to be determined.
Management of neuropsychiatric lupus is similar to the management of neuropsychiatric disease in patients without lupus. Treatment depends on the underlying causes of a patient’s disease, and may include immunosuppressants, anticoagulants, and symptomatic therapy.
MRI with gadolinium contrast is the primary radiologic tool used to diagnose ailments of the central nervous system, BNS included. MRI’s effect is twofold in that it is able to identify brain and spine abnormalities, as well as identifying tissues appropriate for biopsy. MRI with gadolinium contrast can also discern which form of BNS has formed. Where the tumoral form of BNS is highlighted by tumor growth in the subcortical hemispheric regions, the diffuse form of BNS is characterized by leptomeningeal and perivascular infiltration by lymphoid cells. Other characteristics of BNS identified via MRI are abnormal enhancement of cranial and spinal nerves, as well as thickening and enhancement of the cauda equina.
Analysis entails analyzing several different aspects of the cerebrospinal fluid (CSF) to identify characteristics linked to WM and BNS. Quantification of leukocytes and their differentiation, as well as a morphological analysis of any detected malignant lymphomas found in the CSF are some parameters assed by CSF analysis.
Flow cytometry, used to identify cell biomarkers, is an auxiliary tool used in CSF analysis. With respect to diagnosing BNS, flow cytometry analyzes CSF contents for B-cells expressing the pan antigens CD19 and CD20, commonly found in WM; it should be noted, not all cases of BNS show conclusive findings in CSF analysis.
Henoch–Schönlein purpura may present with an atypical manifestation, which can be confused with papular urticaria, systemic lupus erythematosus, meningococcemia, dermatitis herpetiformis, and acute hemorrhagic edema of infancy.
Multiple standards exist for defining Henoch–Schönlein purpura, including the 1990 American College of Rheumatology (ACR) classification and the 1994 Chapel Hill Consensus Conference (CHCC). Some have reported the ACR criteria to be more sensitive than those of the CHCC.
More recent classifications, the 2006 European League Against Rheumatism (EULAR) and Pediatric Rheumatology Society (PReS) classification, include palpable purpura as a mandatory criterion, together with at least one of the following findings: diffuse abdominal pain, predominant IgA deposition (confirmed on skin biopsy), acute arthritis in any joint, and renal involvement (as evidenced by the presence of blood and/or protein in the urine).