Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
          
        
Molecular (DNA) testing for PAX6 gene mutations (by sequencing of the entire coding region and deletion/duplication analysis) is available for isolated aniridia and the Gillespie syndrome. For the WAGR syndrome, high-resolution cytogenetic analysis and fluorescence in situ hybridization (FISH) can be utilized to identify deletions within chromosome band 11p13, where both the PAX6 and WT1 genes are located.
Most people with the disease need laser repairs to the retina, and about 60 per cent need further surgery.
All newborns should have screening eye examinations, including an evaluation of the red reflexes.
- The red reflex test is best performed in a darkened room and involves shining a bright direct ophthalmoscope into both eyes simultaneously from a distance of 1– 2 ft. This test can be used for routine ocular screening by nurses, pediatricians, family practitioners, and optometrists.
- Retinoscopy through the child's undilated pupil is helpful for assessing the potential visual significance of an axial lens opacity in a pre-verbal child. Any central opacity or surrounding cortical distortion greater than 3 mm can be assumed to be visually significant.
- Laboratory Tests : In contrast to unilateral cataracts, bilateral congenital cataracts may be associated with many systemic and metabolic diseases. A basic laboratory evaluation for bilateral cataracts of unknown cause in apparently healthy children includes:
There is no known cure for this syndrome. Patients usually need ophthalmic surgery and may also need dental surgery
Genetic counseling and screening of the mother's relatives is recommended.
The diagnostic work up usually includes and MRI of the brain, an EEG, ophthalmic examination and a cardiac ECHO.
Muscle biopsy - which is not commonly done - may show storage of abnormal material and secondary mitochondrial abnormalities in skeletal muscle. Other features that may be seen on muscle biopsy include variability in fibre size, increase in internal and centralized nuclei, type 1 fibre hypotrophy with normally sized type 2 fibres, increased glycogen storage and variable vacuoles on light microscopy
The diagnosis is confirmed by sequencing of the EPG5.
Retinal detachment can be examined by fundus photography or ophthalmoscopy. Fundus photography generally needs a considerably larger instrument than the ophthalmoscope, but has the advantage of availing the image to be examined by a specialist at another location and/or time, as well as providing photo documentation for future reference. Modern fundus photographs generally recreate considerably larger areas of the fundus than what can be seen at any one time with handheld ophthalmoscopes.
Ultrasound has diagnostic accuracy similar to that of examination by an ophthalmologist. The recent meta-analysis shows the diagnostic accuracy of emergency department (ED) ocular ultrasonography is high. The sensitivity and specificity ranged from 97% to 100% and 83% to 100%. The typical feature of retinal detachment when viewed on ultrasound is "flying angel sign". It shows the detached retina moving with a fixed point under the B mode, linear probe 10 MHz.
This includes Ataxia-telegiectasia, Chédiak-Higashi syndrome, DiGeorge syndrome, Griscelli syndrome and Marinesco-Sjogren syndrome.
In general, the younger the child, the greater the urgency in removing the cataract, because of the risk of amblyopia. For optimal visual development in newborns and young infants, a visually significant unilateral congenital cataract should be detected and removed before age 6 weeks, and visually significant bilateral congenital cataracts should be removed before age 10 weeks.
Some congenital cataracts are too small to affect vision, therefore no surgery or treatment will be done. If they are superficial and small, an ophthalmologist will continue to monitor them throughout a patient's life. Commonly, a patient with small congenital cataracts that do not affect vision will eventually be affected later in life; generally this will take decades to occur.
It is important that people be examined by someone specializing in low vision care prior to other rehabilitation training to rule out potential medical or surgical correction for the problem and to establish a careful baseline refraction and prescription of both normal and low vision glasses and optical aids. Only a doctor is qualified to evaluate visual functioning of a compromised visual system effectively. The American Medical Association provides an approach to evaluating visual loss as it affects an individual's ability to perform activities of daily living.
Screening adults who have no symptoms is of uncertain benefit.
A minority of retinal detachments result from trauma, including blunt blows to the orbit, penetrating trauma, and concussions to the head. A retrospective Indian study of more than 500 cases of rhegmatogenous detachments found that 11% were due to trauma, and that gradual onset was the norm, with over 50% presenting more than one month after the inciting injury.
Diagnosis is made by an ophthalmologist or optometrist based on the clinical presentation. One indication can be the Amsler sign, which is the presence of blood (hyphema) in the aspirated vitreous fluid, in paracentesis of the anterior chamber. This is caused due to iris atrophy usually seen in FHI and exposure of the fragile iris vasculature to the vitreous fluid. The sudden change of pressure in the anterior chamber upon suction induced by the paracentesis, or during a cataract surgery, causes bursting of the fragile superficial iris capillaries resultsing in micro-bleeding. This is one clinical diagnostic sign of FHI slit lamp examination shows stringy keratic precipitates
Macular telangiectasia type 1 must be differentiated from secondary telangiectasis caused by retinal vascular diseases such as retinal venous occlusions, diabetic retinopathy, radiation retinopathy, sickle cell maculopathy, inflammatory retinopathy/Irvine–Gass syndrome, ocular ischemic syndrome/carotid artery obstruction, hypertensive retinopathy, polycythemia vera retinopathy, and localized retinal capillary hemangioma. In addition, Macular telangiectasia type 1 should be clearly differentiated from dilated perifoveal capillaries with evidence of vitreous cellular infiltration secondary to acquired inflammatory disease or tapetoretinal dystrophy. Less commonly, macular telangiectasis has been described in association with fascioscapulohumeral muscular dystrophy, incontinentia pigmenti, and familial exudative vitreoretinopathy with posterior pole involvement.
Macular telangiectasia type 2 is commonly under-diagnosed. The findings may appear very similar to diabetic retinopathy, and many cases ave been incorrectly ascribed to diabetic retinopathy or age-related macular degeneration. Recognition of this condition can save an affected patient from unnecessarily undergoing extensive medical testing and/or treatment. MacTel should be considered in cases of mild paramacular dot and blot hemorrhages and in cases of macular and paramacular RPE hyperplasia where no other cause can be identified.
Patients usually do not require treatment due to benign nature of the disease. In case cataract develops patients generally do well with cataract surgery.
A practical application of AMD-associated genetic markers is in the prediction of progression of AMD from early stages of the disease to neovascularization.
Although MacTel is uncommon, its prevalence is probably higher than most physicians believe. The early findings are subtle, so the diagnosis is likely often missed by optometrists and general ophthalmologists. MacTel was detected in 0.1% of subjects in the Beaver Dam study population over age 45 years, but this is probably an underestimate because identification was made based only on color photographs.
No major new biomicroscopic features of MacTel have been identified since the early work of Gass and colleagues.
The advent of optical coherence tomography (OCT) has allowed better characterization of the nature of the inner and outer lamellar cavities. Loss of central masking seen on autofluorescence studies, apparently due to loss of luteal pigment, is now recognized as probably the earliest and most sensitive and specific MacTel abnormality.
The key fundus findings in macular telangiectasia type 2 involve retinal crystalline—fine, refractile deposits in the superficial retinal layers—may be seen within the affected area.a focal area of diminished retinal transparency (i.e. "greying") and/or small retinal hemorrhages just temporal to the fovea. Dilated capillaries may also be noted within this area, and while this is often difficult to visualize ophthalmoscopically, the abnormal capillary pattern is readily identifiable with fluorescein angiography.
Areas of focal RPE hyperplasia, i.e.pigment plaques, often develop in the paramacular region as a response to these abnormal vessels. Other signs of macular telangiectasia type 2 include right angle venules, representing an unusual alteration of the vasculature in the paramacular area, with vessels taking an abrupt turn toward the macula as if being dragged.
Diagnosis of MacTel type 2 may be aided by the use of advanced imaging techniques such as fluorescein angiography, fundus autofluorescence, and OCT. These can help to identify the abnormal vessels, pigment plaques, retinal crystals, foveal atrophy and intraretinal cavities associated with this disorder.
Fluorescein angiography (FA) is helpful in identifying the anomalous vasculature, particularly in the early stages of Type 2 disease. Formerly, FA was essential in making a definitive diagnosis. However, the diagnosis can be established with less invasive imaging techniques such as OCT and fundus autofluorescence. Some clinicians argue that FA testing may be unnecessary when a diagnosis is apparent via less invasive means.
The natural history of macular telangiectasia suggests a slowly progressive disorder. A retrospective series of 20 patients over 10 to 21 years showed deterioration of vision in more than 84% of eyes, either due to intra-retinal edema and serous retinal detachment (Type 1) or pigmented RPE scar formation or neovascularisation (Type 2).
Acorea, microphthalmia and cataract syndrome is a rare genetically inherited condition.
It has been suggested that the disease follows a x-linked pattern of inheritance though studies done on this particular disease are few.
Aniridia may be broadly divided into hereditary and sporadic forms. Hereditary aniridia is usually transmitted in an autosomal dominant manner (each offspring has a 50% chance of being affected), although rare autosomal recessive forms (such as Gillespie syndrome) have also been reported. Sporadic aniridia mutations may affect the WT1 region adjacent to the AN2 aniridia region, causing a kidney cancer called nephroblastoma (Wilms tumor). These patients often also have genitourinary abnormalities and intellectual disability (WAGR syndrome).
Several different mutations may affect the PAX6 gene. Some mutations appear to inhibit gene function more than others, with subsequent variability in the severity of the disease. Thus, some aniridic individuals are only missing a relatively small amount of iris, do not have foveal hypoplasia, and retain relatively normal vision. Presumably, the genetic defect in these individuals causes less "heterozygous insufficiency," meaning they retain enough gene function to yield a milder phenotype.
- AN
- Aniridia and absent patella
- Aniridia, microcornea, and spontaneously reabsorbed cataract
- Aniridia, cerebellar ataxia, and mental deficiency (Gillespie syndrome)
Acorea or fibrous occlusion of the pupil, microphthalmia and cataracts are present in both eyes. Microcornea and iridocorneal dysgenesis also occur. The retina and optic disc are normal.
Cell based therapies using bone marrow stem cells as well as retinal pigment epithelial transplantation are being studied. A number of trials have occurred in humans with encouraging results.
Wagner's syndrome has for a long time been considered a synonym for Stickler's syndrome. However, since the gene that is responsible for Wagner disease (and Erosive Vitreoretinopathie) is known (2005), the confusion has ended. For Wagner disease is the Versican gene (VCAN) located at 5q14.3 is responsible.
For Stickler there are 4 genes are known to cause this syndrome: COL2A1 (75% of Stickler cases), COL11A1 (also Marshall syndrome), COL11A2 (non-ocular Stickler) and COL9A1 (recessive Stickler).
The gene involved helps regulate how the body makes collagen, a sort of chemical glue that holds tissues together in many parts of the body. This particular collagen gene only becomes active in the jelly-like material that fills the eyeball; in Wagner's disease this "vitreous" jelly grabs too tightly to the already weak retina and pulls it away.
The World Health Organization estimates that 80% of visual loss is either preventable or curable with treatment. This includes cataracts, onchocerciasis, trachoma, glaucoma, diabetic retinopathy, uncorrected refractive errors, and some cases of childhood blindness. The Center for Disease Control and Prevention estimates that half of blindness in the United States is preventable.
Posterior Vitreous Detachment is diagnosed via dilated eye examination. For some patients the vitreous gel is extremely clear and so it can be hard to see the PVD. In these cases, additional imaging such as Optical Coherence Tomography (OCT) or ocular ultrasound are used.
Bilateral vestibular schwannomas are diagnostic of NF2.
NF II can be diagnosed with 65% accuracy prenatally with chorionic villus sampling or amniocentesis.
In veterinary practice, nuclear sclerosis is a consistent finding in dogs greater than six years old. Nuclear sclerosis appears as a bilateral bluish-grey haziness at the nucleus, or center of the lens, caused by an increase in the refractive index of that part of the lens due to its increased density. It is often confused with cataracts. The condition is differentiated from a cataract by its appearance and by shining a penlight into the eye. With nuclear sclerosis, a reflection from the tapetum will be seen, while a cataract will block reflection.
There is no treatment for this condition currently.