Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
This is based on MRI scan, magnetic resonance angiography and CT scan. A cerebral digital subtraction angiography (DSA) enhances visualization of the fistula.
- CT scans classically show an enlarged superior ophthalmic vein, cavernous sinus enlargement ipsilateral (same side) as the abnormality and possibly diffuse enlargement of all the extraocular muscles resulting from venous engorgement.
- Selective arteriography is used to evaluate arteriovenous fistulas.
- High resolution digital subtraction angiography may help in classifying CCF into dural and direct type and thus formulate a strategy to treat it either by a balloon or coil or both with or without preservation of parent ipsilateral carotid artery.
Cerebral angiography is the diagnostic standard. MRIs are usually normal.
The Cognard et al. Classification correlates venous drainage patterns with increasingly aggressive neurological clinical course.
The mainstay of treatment for CCF is endovascular therapy. This may be transarterial (mostly in the case of direct CCF) or transvenous (most commonly in indirect CCF). Occasionally, more direct approaches, such as direct transorbital puncture of the cavernous sinus or cannulation of the draining superior orbital vein are used when conventional approaches are not possible. Spontaneous resolution of indirect fistulae has been reported but is uncommon. Staged manual compression of the ipsilateral carotid has been reported to assist with spontaneous closure in selected cases.
Direct CCF may be treated by occlusion of the affected cavernous sinus (coils, balloon, liquid agents), or by reconstruction of the damaged internal carotid artery (stent, coils or liquid agents).
Indirect CCF may be treated by occlusion of the affected cavernous sinus with coils, liquid agents or a combination of both.
The radiocephalic arteriovenous fistula (RC-AVF) is a shortcut between cephalic vein and radial artery at the wrist. It is the recommended first choice for hemodialysis access. Possible underlying causes for failure are stenosis and thrombosis especially in diabetics and those with low blood flow such as due to narrow vessels, arteriosclerosis and advanced age. Reported patency of fistulae after 1 year is about 62.5%.
Sinus films are helpful in the diagnosis of sphenoid sinusitis. Opacification, sclerosis, and air-fluid levels are typical findings. Contrast-enhanced CT scan may reveal underlying sinusitis, thickening of the superior ophthalmic vein, and irregular filling defects within the cavernous sinus; however, findings may be normal early in the disease course.
A MRI using flow parameters and an MR venogram are more sensitive than a CT scan, and are the imaging studies of choice to diagnose cavernous sinus thrombosis. Findings may include deformity of the internal carotid artery within the cavernous sinus, and an obvious signal hyperintensity within thrombosed vascular sinuses on all pulse sequences.
Cerebral angiography can be performed, but it is invasive and not very sensitive. Orbital venography is difficult to perform, but it is excellent in diagnosing occlusion of the cavernous sinus.
CBC, ESR, blood cultures, and sinus cultures help establish and identify an infectious primary source. Lumbar puncture is necessary to rule out meningitis.
The procedure was invented by doctors James Cimino and M. J. Brescia in 1966. Before the Cimino fistula was invented, access was through a Scribner shunt, which consisted of a Teflon tube with a needle at each end. Between treatments, the needles were left in place and the tube allowed blood flow to reduce clotting. But Scribner shunts lasted only a few days to weeks. Frustrated by this limitation, James E. Cimino recalled his days as a phlebotomist (blood drawer) at New York City's Bellevue Hospital in the 1950s when Korean War veterans showed up with fistulas caused by trauma. Cimino recognized that these fistulas did not cause the patients harm and were easy places to get repeated blood samples. He convinced surgeon Kenneth Appell to create some in patients with chronic kidney failure and the result was a complete success. Scribner shunts were quickly replaced with Cimino fistulas, and they remain the most effective, longest-lasting method for long-term access to patients' blood for hemodialysis today.
Various diagnostic modalities exist to demonstrate blood flow or absence thereof in the vertebral arteries. The gold standard is cerebral angiography (with or without digital subtraction angiography). This involves puncture of a large artery (usually the femoral artery) and advancing an intravascular catheter through the aorta towards the vertebral arteries. At that point, radiocontrast is injected and its downstream flow captured on fluoroscopy (continuous X-ray imaging). The vessel may appear stenotic (narrowed, 41–75%), occluded (blocked, 18–49%), or as an aneurysm (area of dilation, 5–13%). The narrowing may be described as "rat's tail" or "string sign". Cerebral angiography is an invasive procedure, and it requires large volumes of radiocontrast that can cause complications such as kidney damage. Angiography also does not directly demonstrate the blood in the vessel wall, as opposed to more modern modalities. The only remaining use of angiography is when endovascular treatment is contemplated (see below).
More modern methods involve computed tomography (CT angiography) and magnetic resonance imaging (MR angiography). They use smaller amounts of contrast and are not invasive. CT angiography and MR angiography are more or less equivalent when used to diagnose or exclude vertebral artery dissection. CTA has the advantage of showing certain abnormalities earlier, tends to be available outside office hours, and can be performed rapidly. When MR angiography is used, the best results are achieved in the "T" setting using a protocol known as "fat suppression". Doppler ultrasound is less useful as it provides little information about the part of the artery close to the skull base and in the vertebral foramina, and any abnormality detected on ultrasound would still require confirmation with CT or MRI.
Treatment for fistula varies depending on the cause and extent of the fistula, but often involves surgical intervention combined with antibiotic therapy.
Typically the first step in treating a fistula is an examination by a doctor to determine the extent and "path" that the fistula takes through the tissue.
In some cases the fistula is temporarily covered, for example a fistula caused by cleft palate is often treated with a palatal obturator to delay the need for surgery to a more appropriate age.
Surgery is often required to assure adequate drainage of the fistula (so that pus may escape without forming an abscess). Various surgical procedures are commonly used, most commonly fistulotomy, placement of a seton (a cord that is passed through the path of the fistula to keep it open for draining), or an endorectal flap procedure (where healthy tissue is pulled over the internal side of the fistula to keep feces or other material from reinfecting the channel). Treatment involves filling the fistula with fibrin glue; also plugging it with plugs made of porcine small intestine submucosa have also been explored in recent years, with variable success. Surgery for anorectal fistulae is not without side effects, including recurrence, reinfection, and incontinence. High rate of recurrence and more chances of complications like incontinence are always there in fistula surgeries (Anal Fistula).
It is important to note that surgical treatment of a fistula without diagnosis or management of the underlying condition, if any, is not recommended. For example, surgical treatment of fistulae in Crohn's disease can be effective, but if the Crohn's disease itself is not treated, the rate of recurrence of fistula is very high (well above 50%).
"Diagnosis" is by examination, either in an outpatient setting or under anaesthesia (referred to as — Examination Under Anaesthesia). The fistula may be explored by using a fistula probe (a narrow instrument). In this way, it may be possible to find both openings. The examination can be an anoscopy. Diagnosis may be aided by performing a fistulogram, proctoscopy and/or sigmoidoscopy.
Possible findings:
- The opening of the fistula onto the skin may be observed
- The area may be painful on examination
- There may be redness
- An area of induration may be felt — thickening due to chronic infection
- A discharge may be seen
CLASSIFICATIONS of ANAL FISTULA
- Park's Classification: This was done in 1976 by Parks et al from UK. This was done in the era when MRI or Endoanal Ultrasound was not there. It classified the fistula in four grades
- St James University Hospital Classification: This was done by Morris et al in the year 2000. This classification was improvement over Parks classification as it was based on MRI studies. It classified the fistula in five grades.
- Garg Classification: This was done by Pankaj Garg in 2017. This classification is improvement over both Parks and St James University Hospital Classification. This was based on MRI studies and operative findings in 440 patients. It classified the fistula in five grades. The grades of this classification correlate quite well with the severity of the disease. Grade I & II are simpler fistulas and can be managed by Fistulotomy whereas grade III-V are complex fistulas in which fistulotomy should be not be done. They should be managed by Fistula experts. Unlike Park's and St James University Hospital Classification, this correlation is quite accurate with Garg's classification. Therefore this new classification is useful to both surgeons and radiologists
70% of patients with carotid arterial dissection are between the ages of 35 and 50, with a mean age of 47 years.
Various types of fistulas include:
Although most fistulas are in forms of a tube, some can also have multiple branches.
Computed tomography (CT scan): A CT scan may be normal if it is done soon after the onset of symptoms. A CT scan is the best test to look for bleeding in or around your brain. In some hospitals, a perfusion CT scan may be done to see where the blood is flowing and not flowing in your brain.
Magnetic resonance imaging (MRI scan): A special MRI technique (diffusion MRI) may show evidence of an ischemic stroke within minutes of symptom onset. In some hospitals, a perfusion MRI scan may be done to see where the blood is flowing and not flowing in your brain.
Angiogram: a test that looks at the blood vessels that feed the brain. An angiogram will show whether the blood vessel is blocked by a clot, the blood vessel is narrowed, or if there is an abnormality of a blood vessel known as an aneurysm.
Carotid duplex: A carotid duplex is an ultrasound study that assesses whether or not you have atherosclerosis (narrowing) of the carotid arteries. These arteries are the large blood vessels in your neck that feed your brain.
Transcranial Doppler (TCD): Transcranial Doppler is an ultrasound study that assesses whether or not you have atherosclerosis (narrowing) of the blood vessels inside of your brain. It can also be used to see if you have emboli (blood clots) in your blood vessels.
Gradient-Echo T2WI magnetic resonance imaging (MRI) is most sensitive method for diagnosing cavernous hemangiomas. MRI is such a powerful tool for diagnosis, it has led to an increase in diagnosis of cavernous hemangiomas since the technology's advent in the 1980s. The radiographic appearance is most commonly described as "popcorn" or "mulberry"-shaped. Computed tomography (CT) scanning is not a sensitive or specific method for diagnosing cavernous hemangiomas. Angiography is typically not necessary, unless it is required to rule out other diagnoses. Additionally, biopsies can be obtained from tumor tissue for examination under a microscope. It is essential to diagnose cavernous hemangioma because treatments for this benign tumor are less aggressive than that of cancerous tumors, such as angiosarcoma. However, since MRI appearance is practically pathognomonic, biopsy is rarely needed for verification.
Prognosis of spontaneous cervical arterial dissection involves neurological and arterial results. The overall functional prognosis of individuals with stroke due to cervical artery dissection does not appear to vary from that of young people with stroke due to other causes. The rate of survival with good outcome (a modified Rankin score of 0–2) is generally about 75%, or possibly slightly better (85.7%) if antiplatelet drugs are used. In studies of anticoagulants and aspirin, the combined mortality with either treatment is 1.8–2.1%.
After the initial episode, 2% may experience a further episode within the first month. After this, there is a 1% annual risk of recurrence. Those with high blood pressure and dissections in multiple arteries may have a higher risk of recurrence. Further episodes of cervical artery dissection are more common in those who are younger, have a family history of cervical artery dissection, or have a diagnosis of Ehlers-Danlos syndrome or fibromuscular dysplasia.
To prevent an TIF, intubation time should be limited to less than 2 weeks and proper techniques should be used when performing tracheotomies. The occurrence of an TIF can be reduced by using more flexible and blunt tracheostomy tubes and insuring that the tubes are properly aligned in the patients. Placing the tracheostomy between the second and third tracheal rings can minimize the risk of an TIF. Repetitive head movements, especially, hyperextension of the neck should be avoided as since this movement results in contact between the innominate artery and the underside of the tube.
Other conditions in which infected perianal "holes" or openings may appear include Pilonidal cysts/sinuses.
Just like berry aneurysm, an intracerebral arteriovenous fistula can rupture causing subarachnoid hemorrhage.
Diagnosis is generally made by magnetic resonance imaging (MRI), particularly using a specific imaging technique known as a gradient-echo sequence MRI, which can unmask small or punctate lesions that may otherwise remain undetected. These lesions are also more conspicuous on FLAIR imaging compared to standard T2 weighing. FLAIR imaging is different from gradient sequences. Rather, it is similar to T2 weighing but suppresses free-flowing fluid signal. Sometimes quiescent CCMs can be revealed as incidental findings during MRI exams ordered for other reasons. Many cavernous hemangiomas are detected "accidentally" during MRIs searching for other pathologies. These "incidentalomas" are generally asymptomatic. In the case of hemorrhage, however, a CT scan is more efficient at showing new blood than an MRI, and when brain hemorrhage is suspected, a CT scan may be ordered first, followed by an MRI to confirm the type of lesion that has bled.
Sometimes the lesion appearance imaged by MRI remains inconclusive. Consequently neurosurgeons will order a cerebral angiogram or magnetic resonance angiogram (MRA). Since CCMs are low flow lesions (they are hooked into the venous side of the circulatory system), they will be angiographically occult (invisible). If a lesion is discernible via angiogram in the same location as in the MRI, then an arteriovenous malformation (AVM) becomes the primary concern.
Cases of lymphangioma are diagnosed by histopathologic inspection. In prenatal cases, cystic lymphangioma is diagnosed using an ultrasound; when confirmed amniocentesis may be recommended to check for associated genetic disorders.
TIF is a rare condition with a .7% frequency, and an mortality rate approaching 100% without surgical intervention. Immediate diagnosis and intervention of an TIF is critical for the surgical intervention success. 25-30% of TIF patients who reach the operating room survive. Recently, the incidence of TIF may have declined due to advances in tracheostomy tube technology and the introduction of the bedside percutaneous dilatational tracheostomy (PDT).
Smith (2015) conducted a study that looked into specific biological markers that correlate to Moyamoya disease. Some of the categories of these biomarkers include phenotypes - conditions commonly related to Moyamoya, radiographical markers for the diagnosis of Moyamoya, and proteins as well as cellular changes that occur in cases of Moyamoya.
Similar to Moyamoya Disease, there are conditions that are closely associated with Moyamoya Syndrome. Some of the more common medical conditions that are closely associated with Moyamoya Syndrome include trisomy 21 (Down's Syndrome), sickle cell disease, and neurofibromatosis type 1. There is also evidence that identifies hyperthyroidism and congenital dwarfing syndromes as two of the more loosely associated syndromes that correlate with the possibility of being diagnosed with Moyamoya Disease later in life.
There is also research that has shown that certain radiographic biomarkers that lead to the diagnosis of Moyamoya Disease have been identified. The specific radiographic markers are now considered an acceptable key component to Moyamoya Disease and have been added to the INternational Classification of Diseases (ICD). These biomarkers of Moyamoya are "stenosis of the distal ICA's up to and including the bifurcation, along with segments of the proximal ACA and MCA...dilated basal collateral vessels must be present" Some other common findings that have not been added to the classification index of those with Moyamoya Disease which are found using radiography involve very distinct changes in the vessels of the brain. These changes include newly formed vessels made to compensate for another change noted, ischemia and cerebrovascular reserve, both found on MRI. Functional changes include evidence of ischemia in vessels of the brain (ICA, ACA, MCA, specifically). It is important to also note that the radiographic biomarkers, in order to be classified as Moyamoya Disease, all findings must be bilateral. If this is not the case and the findings are unilateral, it is diagnosed as Moyamoya Syndrome.
There are also several protein biomarkers that have been linked to the Moyamoya Disease diagnosis. Although the sample size of the studies performed are small due to the rarity of the disease, the findings are indicative of a correlation between the disease and several specific protein biomarkers. Other studies have confirmed the correlation of Moyamoya and adhesion molecule 1 (ICAM-1) being increased as compared to normal vascular function counterparts Furthermore, it has been concluded that the localization of inflammatory cells suggests that the inflammation stimulus iteself may be responsible for the proliferation and occlusion in the ICA, ACA, and MCA found in those with Moyamoya Disease.
The goal of treatment is to prevent the development or continuation of neurologic deficits. Treatments include observation, anticoagulation, stent implantation and carotid artery ligation.
In the treatment of a brain cavernous hemangioma, neurosurgery is usually the treatment chosen. Research needs to be conducted on the efficacy of treatment with stereotactic radiation therapy, especially on the long-term. However, radiotherapy is still being studied as a form of treatment if neurosurgery is too dangerous due the location of the cavernoma. Genetic researchers are still working on determining the cause of the illness and the mechanism behind blood vessel formation. Clinical trials are being conducted to better assess when it is appropriate to treat a patient with this malformation and with what treatment method. Additionally, long term studies are being conducted because there is no information related to the long-term outlook of patients with cavernoma. A registry exists known as The International Cavernous Angioma Patient Registry collects information from patients diagnosed with cavernoma in order to facilitate discovery of non-invasive treatments.