Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A recommend surveillance program for Multiple Endocrine Neoplasia Type 1 has been suggested by the International Guidelines for Diagnosis and Therapy of MEN syndromes group.
The purpose of radiologic imaging is to locate the lesion, evaluate for signs of invasion and detect metastasis. Features of GIST vary depending on tumor size and organ of origin. The diameter can range from a few millimeters to more than 30 cm. Larger tumors usually cause symptoms in contrast to those found incidentally which tend to be smaller and have better prognosis. Large tumors tend to exhibit malignant behavior but small GISTs may also demonstrate clinically aggressive behavior.
Plain radiographs are not very helpful in the evaluation of GISTs. If an abnormality is seen, it will be an indirect sign due to the tumor mass effect on adjacent organs. On abdominal x-ray, stomach GISTs may appear as a radiopaque mass altering the shape of the gastric air shadow. Intestinal GISTs may displace loops of bowel and larger tumors may obstruct the bowel and films will show an obstructive pattern. If cavitations are present, plain radiographs will show collections of air within the tumor. Calcification is an unusual feature of GIST but if present can be visible on plain films.
Barium fluoroscopic examinations and CT are commonly used to evaluate the patient with abdominal complaints. Barium swallow images show abnormalities in 80% of GIST cases. However, some GISTs may be located entirely outside the lumen of the bowel and will not be appreciated with a barium swallow. Even in cases when the barium swallow is abnormal, an MRI or CT scan must follow since it is impossible to evaluate abdominal cavities and other abdominal organs with a barium swallow alone. In a CT scan, abnormalities may be seen in 87% of patients and it should be made with both oral and intravenous contrast. Among imaging studies, MRI has the best tissue contrast, which aids in the identification of masses within the GI tract (intramural masses). Intravenous contrast material is needed to evaluate lesion vascularity.
Preferred imaging modalities in the evaluation of GISTs are CT and MRI, and, in selected situations, endoscopic ultrasound. CT advantages include its ability to demonstrate evidence of nearby organ invasion, ascites, and metastases. The ability of MRI to produce images in multiple planes is helpful in determining the bowel as the organ of origin (which is difficult when the tumor is very large), facilitating diagnosis.
CT scanning is often undertaken (see the "radiology" section).
The definitive diagnosis is made with a biopsy, which can be obtained endoscopically, percutaneously with CT or ultrasound guidance or at the time of surgery. A biopsy sample will be investigated under the microscope by a pathologist physician. The pathologist examines the histopathology to identify the characteristics of GISTs (spindle cells in 70-80%, epitheloid aspect in 20-30%). Smaller tumors can usually be confined to the muscularis propria layer of the intestinal wall. Large ones grow, mainly outward, from the bowel wall until the point where they outstrip their blood supply and necrose (die) on the inside, forming a cavity that may eventually come to communicate with the bowel lumen.
When GIST is suspected—as opposed to other causes for similar tumors—the pathologist can use immunohistochemistry (specific antibodies that stain the molecule CD117 [also known as "c-kit"] —see below). 95% of all GISTs are CD117-positive (other possible markers include CD34, DOG-1, desmin, and vimentin). Other cells that show CD117 positivity are mast cells.
If the CD117 stain is negative and suspicion remains that the tumor is a GIST, the newer antibody DOG-1 (Discovered On GIST-1) can be used. Also sequencing of Kit and PDGFRA can be used to prove the diagnosis.
Hormonal syndromes should be confirmed with laboratory testing. Laboratory findings in Cushing syndrome include increased serum glucose (blood sugar) and increased urine cortisol. Adrenal virilism is confirmed by the finding of an excess of serum androstenedione and dehydroepiandrosterone. Findings in Conn syndrome include low serum potassium, low plasma renin activity, and high serum aldosterone. Feminization is confirmed with the finding of excess serum estrogen.
Carney triad (CT) is characterized by the coexistence of three types of neoplasms, mainly in young women, including gastric gastrointestinal stromal tumor, pulmonary chondroma, and extra-adrenal paraganglioma. The underlying genetic defect remains elusive. CT is distinct from Carney complex, and the Carney-Stratakis syndrome.
Radiological studies of the abdomen, such as CT scans and magnetic resonance imaging are useful for identifying the site of the tumor, differentiating it from other diseases, such as adrenocortical adenoma, and determining the extent of invasion of the tumor into surrounding organs and tissues. CT scans of the chest and bone scans are routinely performed to look for metastases to the lungs and bones respectively. These studies are critical in determining whether or not the tumor can be surgically removed, the only potential cure at this time.
Cardiac myxomas can be difficult to manage surgically because of recurrence within the heart, often far away from the site of the initial tumor.
Carney (CT), named for J Aidan Carney, is considered to be a specific type of multiple endocrine neoplasia (MEN). The three classically associated tumors are a subset of gastric epithelioid leiomyosarcoma (it is now known that this subset is actually gastrointestinal stromal tumor arising from the interstitial cells of Cajal), pulmonary chondroma, and extra-adrenal paraganglioma.
The condition manifests more commonly in females. Multiple tumors in multiple organs in young patients, with occasional sibling involvement, suggested an inherited disorder, but the underlying genetic basis has not been identified.
In addition to these three classical tumors, there is an increased incidence of pheochromocytoma, esophageal leiomyoma and adrenocortical adenoma.
The original description employed the then-prevailing terminology of gastric epithelioid leiomyosarcoma. Subsequent advances in molecular biology have led to the current terminology of gastrointestinal stromal tumors (GISTs). However, there is limited evidence to suggest that the gastrointestinal stromal tumors (GIST) in Carney triad lack CD117 (c-kit) mutations (i.e., they are wild-type), and hence these GISTs may prove unresponsive to Gleevec.
The American neurosurgeon Harvey Cushing in 1914 reported a patient with a pituitary tumour that he had operated on. Post mortum finding were suggestive of Carney complex. this condition had yet to be described. In 2017 archived tissue from this operation were subjected to DNA sequencing. This revealed a Arg74His (Arginine to Histidine: Guanine (G)-> Adenosine (A) transition in the second codon position of the 74 codon in the protein) mutation in the PRKAR1A gene confirming the diagnosis of Carney complex. Cushing's paper appears to be the first report of this complex.
Multiple Endocrine Neoplasia type 1 (MEN1) is a rare hereditary endocrine cancer syndrome characterized primarily by tumors of the parathyroid glands (95% of cases), endocrine gastroenteropancreatic (GEP) tract (30-80% of cases), and anterior pituitary (15-90% of cases). Other endocrine and non-endocrine neoplasms including adrenocortical and thyroid tumors, visceral and cutaneous lipomas, meningiomas, facial angiofibromas and collagenomas, and thymic, gastric, and bronchial carcinoids also occur. The phenotype of MEN1 is broad, and over 20 different combinations of endocrine and non-endocrine manifestations have been described. MEN1 should be suspected in patients with an endocrinopathy of two of the three characteristic affected organs, or with an endocrinopathy of one of these organs plus a first-degree relative affected by MEN1 syndrome.
MEN1 patients usually have a family history of MEN1. Inheritance is autosomal dominant; any affected parent has a 50% chance to transmit the disease to his or her progeny. MEN1 gene mutations can be identified in 70-95% of MEN1 patients.
Many endocrine tumors in MEN1 are benign and cause symptoms by overproduction of hormones or local mass effects, while other MEN1 tumors are associated with an elevated risk for malignancy. About one third of patients affected with MEN1 will die early from an MEN1-related cancer or associated malignancy. Entero-pancreatic gastrinomas and thymic and bronchial carcinoids are the leading cause of morbidity and mortality. Consequently, the average age of death in untreated individuals with MEN1 is significantly lower (55.4 years for men and 46.8 years for women) than that of the general population.
Diagnosis usually occurs upon investigation of a cause for already suspected Cushing's syndrome. High levels of cortisol observed in patients with PPNAD are not suppressed upon administration of dexamethasone (dexamethasone suppression test), and upon MRI or CT imaging, the pituitary will show no abnormalities. Measuring ACTH will confirm that the cause of the patients Cushing's syndrome is ACTH independent. The nature of Cushing's syndrome itself is periodic, which can make diagnosing PPNAD increasingly difficult.
Diagnosis of PPNAD can be difficult to determine preoperatively as CT scan findings can be variable ie appear normal or suggest unilateral adrenal lesions therefore impeding the correct diagnosis. NP-59 scintigraphy may be particularly useful in identifying the bilateral nature of the disease.
Gene studies are not necessary for diagnosis as there are clear gross and histological diagnostic markers, as the nodules can usually be seen clearly in both cases A positive family history of PPNAD has been shown to be associated with abnormal histological findings, e.g. mitotic figures, which may further hinder diagnosis. At the point where abdominal CT scanning and pituitary fossa MRI show no clear abnormalities, adrenalectomy may be performed.
CT-scans, MRIs, sonography (ultrasound), and endoscopy (including endoscopic ultrasound) are common diagnostic tools. CT-scans using contrast medium can detect 95 percent of tumors over 3 cm in size, but generally not tumors under 1 cm.
Advances in nuclear medicine imaging, also known as molecular imaging, has improved diagnostic and treatment paradigms in patients with neuroendocrine tumors. This is because of its ability to not only identify sites of disease but also characterize them. Neuronedocrine tumours express somatostatin receptors providing a unique target for imaging. Octreotide is a synthetic modifications of somatostatin with a longer half-life. OctreoScan, also called somatostatin receptor scintigraphy (SRS or SSRS), utilizes intravenously administered octreotide that is chemically bound to a radioactive substance, often indium-111, to detect larger lesions with tumor cells that are avid for octreotide.
Somatostatin receptor imaging can now be performed with positron emission tomography (PET) which offers higher resolution, three-dimensional and more rapid imaging. Gallium-68 receptor PET-CT is much more accurate than an OctreoScan.
Imaging with fluorine-18 fluorodeoxyglucose (FDG) PET may be valuable to image some neuroendocrine tumors. This scan is performed by injected radioactive sugar intravenously. Tumors that grow more quickly use more sugar. Using this scan, the aggressiveness of the tumor can be assessed.
The combination of somatostatin receptor and FDG PET imaging is able to quantify somatostatin receptor cell surface (SSTR) expression and glycolytic metabolism, respectively. The ability to perform this as a whole body study is highlighting the limitations of relying on histopathology obtained from a single site. This is enabling better selection of the most appropriate therapy for an individual patient.
Pituitary incidentalomas are pituitary tumors that are characterized as an incidental finding. They are often discovered by computed tomography (CT) or magnetic resonance imaging (MRI), performed in the evaluation of unrelated medical conditions such as suspected head trauma, in cancer staging or in the evaluation of nonspecific symptoms such as dizziness and headache. It is not uncommon for them to be discovered at autopsy. In a meta-analysis, adenomas were found in an average of 16.7% in postmortem studies, with most being microadenomas (<10mm); macrodenomas accounted for only 0.16% to 0.2% of the decedents. While non-secreting, noninvasive pituitary microadenomas are generally considered to be literally as well as clinically benign, there are to date scant studies of low quality to support this assertion.
It has been recommended in the current Clinical Practice Guidelines (2011) by the Endocrine Society - a professional, international medical organization in the field of endocrinology and metabolism - that all patients with pituitary incidentalomas undergo a complete medical history and physical examination, laboratory evaluations to screen for hormone hypersecretion and for hypopituitarism. If the lesion is in close proximity to the optic nerves or optic chiasm, a visual field examination should be performed. For those with incidentalomas which do not require surgical removal, follow up clinical assessments and neuroimaging should be performed as well follow-up visual field examinations for incidentalomas that abut or compress the optic nerve and chiasm and follow-up endocrine testing for macroincidentalomas.
Symptoms from secreted hormones may prompt measurement of the corresponding hormones in the blood or their associated urinary products, for initial diagnosis or to assess the interval change in the tumor. Secretory activity of the tumor cells is sometimes dissimilar to the tissue immunoreactivity to particular hormones.
Given the diverse secretory activity of NETs there are many other potential markers, but a limited panel is usually sufficient for clinical purposes. Aside from the hormones of secretory tumors, the most important markers are:
- chromogranin A (CgA), present in 99% of metastatic carcinoid tumors
- urine 5-hydroxyindoleacetic acid (5-HIAA)
- neuron-specific enolase (NSE, gamma-gamma dimer)
- synaptophysin (P38)
Newer markers include N-terminally truncated variant of Hsp70 is present in NETs but absent in normal pancreatic islets. High levels of CDX2, a homeobox gene product essential for intestinal development and differentiation, are seen in intestinal NETs. Neuroendocrine secretory protein-55, a member of the chromogranin family, is seen in pancreatic endocrine tumors but not intestinal NETs.
Unlike tumors of the posterior Pituitary, Pituitary adenomas are classified as endocrine tumors (not brain tumors). Pituitary adenomas are classified based upon anatomical, histological and functional criteria.
- Anatomically pituitary tumors are classified by their size based on radiological findings; either microadenomas (less than <10 mm) or macroadenomas (equal or greater than ≥10 mm).
- Histological classification utilizes an immunohistological characterization of the tumors in terms of their hormone production. Historically they were classed as either basophilic, acidophilic, or chromophobic on the basis of whether or not they took up the tinctorial stains hematoxylin and eosin. This classification has fallen into disuse, in favor of a classification based on what type of hormone is secreted by the tumor. Approximately 20-25% of adenomas do not secrete any readily identifiable active hormones ('non-functioning tumors') yet they are still sometimes referred to as 'chromophobic'.
- Functional classification is based upon the tumors endocrine activity as determined by serum hormone levels and pituitary tissue cellular hormone secretion detected via immunohistochemical staining. The "Percentage of hormone production cases" values are the fractions of adenomas producing each related hormone of each tumor type as compared to all cases of pituitary tumors, and does not directly correlate to the percentages of each tumor type because of smaller or greater incidences of absence of secretion of the expected hormone. Thus, nonsecretive adenomas may be either "null cell adenomas" or a more specific adenoma that, however, remains nonsecretive.
The MACIS system of estimating the prognosis of papillary thyroid cancer was developed by Clive S. Grant at the Mayo Clinic, and was based on careful evaluation of a large group of patients. It is probably the most reliable staging method available.
It assigns scores to the main factors involved, and uses the sum of this score to calculate the prognosis:
Most patients fall into the low-risk category (MACIS score less than 6.0) and are cured of the cancer at the time of surgery.
Children with multiple lung metastases and/or a miliary aspect still have an excellent long-term prognosis if given adequate treatment.
After diagnosis, it is important for patients to be continually monitored. The most common treatment for PPNAD is bilateral laparoscopic adrenalectomy; the process by which both adrenal glands are removed by a small incision.
Patients who have received this treatment will be prescribed mineralocorticoid and glucocorticoid steroids as they are no longer being naturally produced.
This is a treatment which has been used and refined since 1984.
A cancer syndrome or family cancer syndrome is a genetic disorder in which inherited genetic mutations in one or more genes predispose the affected individuals to the development of cancers and may also cause the early onset of these cancers. Cancer syndromes often show not only a high lifetime risk of developing cancer, but also the development of multiple independent primary tumors. Many of these syndromes are caused by mutations in tumor suppressor genes, genes that are involved in protecting the cell from turning cancerous. Other genes that may be affected are DNA repair genes, oncogenes and genes involved in the production of blood vessels (angiogenesis). Common examples of inherited cancer syndromes are hereditary breast-ovarian cancer syndrome and hereditary non-polyposis colon cancer (Lynch syndrome).
Hereditary cancer syndromes underlie 5 to 10% of all cancers. Scientific understanding of cancer susceptibility syndromes is actively expanding: additional syndromes are being found, the underlying biology is becoming clearer, and commercialization of diagnostic genetics methodology is improving clinical access. Given the prevalence of breast and colon cancer, the most widely recognized syndromes include hereditary breast-ovarian cancer syndrome (HBOC) and hereditary non-polyposis colon cancer (HNPCC, Lynch syndrome).
Some rare cancers are strongly associated with hereditary cancer predisposition syndromes. Genetic testing should be considered with adrenocortical carcinoma; carcinoid tumors; diffuse gastric cancer; fallopian tube/primary peritoneal cancer; leiomyosarcoma; medullary thyroid cancer; paraganglioma/pheochromocytoma; renal cell carcinoma of chromophobe, hybrid oncocytic, or oncocytoma histology; sebaceous carcinoma; and sex cord tumors with annular tubules. Primary care physicians can identify people who are at risk of heridatary cancer syndrome.
Based on overall cancer staging into stages I to IV, papillary thyroid cancer has a 5-year survival rate of 100 percent for stages I and II, 93 percent for stage III and 51 percent for stage IV.
Generalized lentiginosis is a cutaneous condition that will occasionally present without other associated abnormalities. It may be caused by carney complex, LEOPARD syndrome or Peutz–Jeghers syndrome.
A lentigo () (plural lentigines, ) is a small pigmented spot on the skin with a clearly defined edge, surrounded by normal-appearing skin. It is a harmless (benign) hyperplasia of melanocytes which is linear in its spread. This means the hyperplasia of melanocytes is restricted to the cell layer directly above the basement membrane of the epidermis where melanocytes normally reside. This is in contrast to the "nests" of multi-layer melanocytes found in moles (melanocytic nevi). Because of this characteristic feature, the adjective "lentiginous" is used to describe other skin lesions that similarly proliferate linearly within the basal cell layer.
Lentigines are distinguished from freckles (ephelis) based on the proliferation of melanocytes. Freckles have a relatively normal number of melanocytes but an increased "amount" of melanin. A lentigo has an increased "number" of melanocytes. Freckles will increase in number and darkness with sunlight exposure, whereas lentigines will stay stable in their color regardless of sunlight exposure.
Lentigines by themselves are benign, however one might desire the removal or treatment of some of them for cosmetic purposes. In this case they can be removed surgically, or lightened with the use of topical depigmentation agents. Some common depigmentation agents such as azelaic acid and kojic acid seem to be inefficient in this case, however other agents might work well (4% hydroquinone, 5% topical cysteamine, 10% topical ascorbic acid).
Conditions characterized by lentigines include:
- Lentigo simplex
- Solar lentigo (Liver spots)
- PUVA lentigines
- Ink spot lentigo
- LEOPARD syndrome
- Mucosal lentigines
- Multiple lentigines syndrome
- Moynahan syndrome
- Generalized lentiginosis
- Centrofacial lentiginosis
- Carney complex
- Inherited patterned lentiginosis in black persons
- Partial unilateral lentiginosis
- Peutz-Jeghers syndrome
- Lentigo maligna
- Lentigo maligna melanoma
- Acral lentiginous melanoma
A cutaneous myxoma, a.k.a. superficial angiomyxoma, consists of a multilobulated myxoid mass containing stellate or spindled fibroblasts with pools of mucin forming cleft-like spaces. There is often a proliferation of blood vessels and an inflammatory infiltrate. Staining is positive for vimentin, negative for cytokeratin and desmin, and variable for CD34, Factor VIIIa, SMA, MSA and S-100.
Clinically, it may present as solitary or multiple flesh-colored nodules on the face, trunk, or extremities. It may occur as part of the Carney complex, and is sometimes the first sign. Local recurrence is common.
Diagnosis is made first by diagnosing Cushing's syndrome, which can be difficult to do clinically since the most characteristic symptoms only occur in a minority of patients. Some of the biochemical diagnostic tests used include salivary and blood serum cortisol testing, 24-hour urinary free cortisol (UFC) testing, the dexamethasone suppression test (DST), and bilateral inferior petrosal sinus sampling (BIPSS). No single test is perfect and multiple tests should always be used to achieve a proper diagnosis. Diagnosing Cushing's disease is a multidisciplinary process involving doctors, endocrinologists, radiologists, surgeons, and chemical pathologists.
Once Cushing's syndrome has been diagnosed, the first step towards finding the cause is measuring plasma corticotropin concentrations. A concentration consistently below 1.1 pmol/L is classified as corticotropin-independent and does not lead to a diagnosis of Cushing's disease. In such cases, the next step is adrenal imaging with CT. If plasma corticotropin concentrations are consistently above 3.3 pmol/L, then corticotropin-dependent Cushing's syndrome is most likely. Any intermediate values need to be cautiously interpreted and a corticotropin-releasing hormone (CRH) test is advised in order to confirm corticotropin dependency. If corticotropin-dependent Cushing's syndrome is determined then the next step is to distinguish between Cushing's disease and ectopic corticotropin syndrome. This is done via a combination of techniques including CRH, high-dose DST, BIPSS, and pituitary MRI.
Two dexamethasone suppression tests (DSTs) are generally used, the overnight and 48-h DSTs. For both tests, a plasma cortisol level above 50 nmol/L is indicative of Cushing's disease. However, 3-8% of patients with Cushing's disease will test negative due to a retention of dexamethasone suppression abilities. For non-Cushing or healthy patients, the false-positive rate is 30%. The 48-h DST is advantageous since it is more specific and can be done by outpatients upon proper instruction. In the high-dose 48-h DST, 2 mg of dexamethasone is given every 6 hours for 48 hours or a single dose of 8 mg is given. This test is not needed if the 48-h low-dose DST has shown suppression of cortisol by over 30%. These tests are based on the glucocorticoid sensitivity of pituitary adenomas compared to non-pituitary tumors.
Administration of corticotropin releasing hormone (CRH) can differentiate this condition from ectopic ACTH secretion. In a patient with Cushing's disease, the tumor cells will be stimulated to release corticotropin and elevated plasma corticotropin levels will be detected. This rarely occurs with ectopic corticotropin syndrome and thus is quite useful for distinguishing between the two conditions. If ectopic, the plasma ACTH and cortisol levels should remain unchanged; if this is pituitary related, levels of both would rise. The CRH test uses recombinant human or bovine-sequence CRH, which is administered via a 100μg intravenous bolus dose. The sensitivity of the CRH test for detecting Cushing's disease is 93% when plasma levels are measured after fifteen and thirty minutes. However, this test is used only as a last resort due to its high cost and complexity.
A CT or MRI of the pituitary may also show the ACTH secreting tumor if present. However, in 40% of Cushing's disease patients MRI is unable to detect a tumor. In one study of 261 patients with confirmed pituitary Cushing's disease, only 48% of pituitary lesions were identified using MRI prior to surgery. The average size of tumor, both those that were identified on MRI and those that were only discovered during surgery, was 6 mm.
A more accurate but invasive test used to differentiate pituitary from ectopic or adrenal Cushing's syndrome is inferior petrosal sinus sampling. A corticotropin gradient sample via BIPSS is required to confirm diagnosis when pituitary MRI imaging and biochemical diagnostic tests have been inconclusive. A basal central:peripheral ratio of over 3:1 when CRH is administered is indicative of Cushing’s disease. This test has been the gold standard for distinguishing between Cushing's disease and ectopic corticotropin syndrome. The BIPSS has a sensitivity and specificity of 94% for Cushing's disease but it is usually used as a last resort due to its invasiveness, rare but serious complications, and the expertise required to perform it.
Another diagnostic test used is the urinary free cortisol (UFC) test, which measures the excess cortisol excreted by the kidneys into the urine. Results of 4x higher cortisol levels than normal are likely to be Cushing's disease. This test should be repeated three times in order to exclude any normally occurring periods of hypercortisolism. The UFC test has a specificity of 81% and thus has a high rate of false-positives that are due to pseudo-Cushing states, sleep apnea, polycystic ovary syndrome, familial glucocorticoid resistance, and hyperthyroidism.
The late-night or midnight salivary cortisol test has been gaining support due to its ease of collection and stability at room temperature, therefore it can be assigned to outpatients. The test measures free circulating cortisol and has both a sensitivity and specificity of 95-98%. This test is especially useful for diagnosing children.
Blue nevi may be divided into the following types:
- A "patch blue nevus" (also known as an "acquired dermal melanocytosis", and "dermal melanocyte hamartoma") is a cutaneous condition characterized by a diffusely gray-blue area that may have superimposed darker macules.
- A "blue nevus of Jadassohn–Tièche" (also known as a "common blue nevus", and "nevus ceruleus") is a cutaneous condition characterized by a steel-blue papule or nodule.
- A "cellular blue nevus" is a cutaneous condition characterized by large, firm, blue or blue-black nodules.
- An "epithelioid blue nevus" is a cutaneous condition most commonly seen in patients with the Carney complex.
- A "deep penetrating nevus" is a type of benign melanocytic skin tumor characterized, as its name suggests, by penetration into the deep dermis and/or subcutis. Smudged chromatic is a typical finding. In some cases mitotic figures or atypical melanocytic cytology are seen, potentially mimicking a malignant melanoma. Evaluation by an expert skin pathologist is advisable in some cases to help differentiate from invasive melanoma.
- An "amelanotic blue nevus" (also known as a "hypomelanotic blue nevus") is a cutaneous condition characterized by mild atypia and pleomorphism.
- A "malignant blue nevus" is a cutaneous condition characterized by a sheet-like growth pattern, mitoses, necrosis, and cellular atypia.