Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Screening ECGs (either at rest or with exercise) are not recommended in those without symptoms who are at low risk. This includes those who are young without risk factors. In those at higher risk the evidence for screening with ECGs is inconclusive.
Additionally echocardiography, myocardial perfusion imaging, and cardiac stress testing is not recommended in those at low risk who do not have symptoms.
Some biomarkers may add to conventional cardiovascular risk factors in predicting the risk of future cardiovascular disease; however, the clinical value of some biomarkers is questionable.
The NIH recommends lipid testing in children beginning at the age of 2 if there is a family history of heart disease or lipid problems. It is hoped that early testing will improve lifestyle factors in those at risk such as diet and exercise.
Screening and selection for primary prevention interventions has traditionally been done through absolute risk using a variety of scores (ex. Framingham or Reynolds risk scores). This stratification has separated people who receive the lifestyle interventions (generally lower and intermediate risk) from the medication (higher risk). The number and variety of risk scores available for use has multiplied, but their efficacy according to a 2016 review was unclear due to lack of external validation or impact analysis. Risk stratification models often lack sensitivity for population groups and do not account for the large number of negative events among the intermediate and low risk groups. As a result, future preventative screening appears to shift toward applying prevention according to randomized trial results of each intervention rather than large-scale risk assessment.
Up to 90% of cardiovascular disease may be preventable if established risk factors are avoided. Currently practiced measures to prevent cardiovascular disease include:
- Tobacco cessation and avoidance of second-hand smoke. Smoking cessation reduces risk by about 35%.
- A low-fat, low-sugar, high-fiber diet including whole grains and fruit and vegetables. Dietary interventions are effective in reducing cardiovascular risk factors over a year, but the longer term effects of such interventions and their impact on cardiovascular disease events is uncertain.
- At least 150 minutes (2 hours and 30 minutes) of moderate exercise per week. Exercise-based cardiac rehabilitation reduces risk of subsequent cardiovascular events by 26%, but there have been few high quality studies of the benefits of exercise training in people with increased cardiovascular risk but no history of cardiovascular disease.
- Limit alcohol consumption to the recommended daily limits; People who moderately consume alcoholic drinks have a 25–30% lower risk of cardiovascular disease. However, people who are genetically predisposed to consume less alcohol have lower rates of cardiovascular disease suggesting that alcohol itself may not be protective. Excessive alcohol intake increases the risk of cardiovascular disease and consumption of alcohol is associated with increased risk of a cardiovascular event in the day following consumption.
- Lower blood pressure, if elevated. A 10 mmHg reduction in blood pressure reduces risk by about 20%.
- Decrease non-HDL cholesterol. Statin treament reduces cardiovascular mortality by about 31%.
- Decrease body fat if overweight or obese. The effect of weight loss is often difficult to distinguish from dietary change, and evidence on weight reducing diets is limited. In observational studies of people with severe obesity, weight loss following bariatric surgery is associated with a 46% reduction in cardiovascular risk.
- Decrease psychosocial stress. This measure may be complicated by imprecise definitions of what constitute psychosocial interventions. Mental stress–induced myocardial ischemia is associated with an increased risk of heart problems in those with previous heart disease. Severe emotional and physical stress leads to a form of heart dysfunction known as Takotsubo syndrome in some people. Stress, however, plays a relatively minor role in hypertension. Specific relaxation therapies are of unclear benefit.
Most guidelines recommend combining preventive strategies. A 2015 Cochrane Review found some evidence that interventions aiming to reduce more than one cardiovascular risk factor may have favourable effects on blood pressure, body mass index and waist circumference; however, evidence was limited and the authors were unable to draw firm conclusions on the effects on cardiovascular events and mortality. For adults without a known diagnosis of hypertension, diabetes, hyperlipidemia, or cardiovascular disease, routine counseling to advise them to improve their diet and increase their physical activity has not been found to significantly alter behavior, and thus is not recommended. Another Cochrane review suggested that simply providing people with a cardiovascular disease risk score may reduce cardiovascular disease risk factors by a small amount compared to usual care. However, there was some uncertainty as to whether providing these scores had any effect on cardiovascular disease events. It is unclear whether or not dental care in those with periodontitis affects their risk of cardiovascular disease.
There are various risk assessment systems for determining the risk of coronary artery disease, with various emphasis on different variables above. A notable example is Framingham Score, used in the Framingham Heart Study. It is mainly based on age, gender, diabetes, total cholesterol, HDL cholesterol, tobacco smoking and systolic blood pressure.
In "stable" angina, chest pain with typical features occurring at predictable levels of exertion, various forms of cardiac stress tests may be used to induce both symptoms and detect changes by way of electrocardiography (using an ECG), echocardiography (using ultrasound of the heart) or scintigraphy (using uptake of radionuclide by the heart muscle). If part of the heart seems to receive an insufficient blood supply, coronary angiography may be used to identify stenosis of the coronary arteries and suitability for angioplasty or bypass surgery.
Stable coronary artery disease (SCAD) is also often called stable ischemic heart disease (SIHD). A 2015 monograph explains that "Regardless of the nomenclature, stable angina is the chief manifestation of SIHD or SCAD." There are U.S. and European clinical practice guidelines for SIHD/SCAD.
The medical care of patients with hypertensive heart disease falls under 2 categories—
- Treatment of hypertension
- Prevention (and, if present, treatment) of heart failure or other cardiovascular disease
Hypertension or high blood pressure affects at least 4 billion people worldwide. Hypertensive heart disease is only one of several diseases attributable to high blood pressure. Other diseases caused by high blood pressure include ischemic heart disease, stroke, peripheral arterial disease, aneurysms and kidney disease. Hypertension increases the risk of heart failure by two or three-fold and probably accounts for about 25% of all cases of heart failure. In addition, hypertension precedes heart failure in 90% of cases, and the majority of heart failure in the elderly may be attributable to hypertension. Hypertensive heart disease was estimated to be responsible for 1.0 million deaths worldwide in 2004 (or approximately 1.7% of all deaths globally), and was ranked 13th in the leading global causes of death for all ages. A world map shows the estimated disability-adjusted life years per 100,000 inhabitants lost due to hypertensive heart disease in 2004.
It is critical to diagnose CRS at an early stage in order to achieve optimal therapeutic efficacy. However, unlike markers of heart damage or stress such as troponin, creatine kinase, natriuretic peptides, reliable markers for acute kidney injury are lacking. Recently, research has found several biomarkers that can be used for early detection of acute kidney injury before serious loss of organ function may occur. Several of these biomarkers include neutrophil gelatinase-associated lipocalin (NGAL), N-acetyl-B-D-glucosaminidase (NAG), Cystatin C, and kidney injury molecule-1 (KIM-1) which have been shown to be involved in tubular damage. Other biomarkers that have been shown to be useful include BNP, IL-18, and fatty acid binding protein (FABP). However, there is great variability in the measurement of these biomarkers and their use in diagnosing CRS must be assessed.
Upon suspicion of PAD, the first-line study is the ankle–brachial index (ABI). When the blood pressure readings in the ankles is lower than that in the arms, blockages in the arteries which provide blood from the heart to the ankle are suspected. Normal ABI range of 1.00 to 1.40.The patient is diagnosed with PAD when the ABI is ≤ 0.90 . ABI values of 0.91 to 0.99 are considered "borderline" and values >1.40 indicate noncompressible arteries. PAD is graded as mild to moderate if the ABI is between 0.41 and 0.90, and an ABI less than 0.40 is suggestive of severe PAD. These relative categories have prognostic value.
In people with suspected PAD but normal resting ABIs, exercise testing of ABI can be done. A base line ABI is obtained prior to exercise. The patient is then asked to exercise (usually patients are made to walk on a treadmill at a constant speed) until claudication pain occurs (or a maximum of 5 minutes), following which the ankle pressure is again measured. A decrease in ABI of 15%-20% would be diagnostic of PAD.
It is possible for conditions which stiffen the vessel walls (such as calcifications that occur in the setting of long term diabetes) to produce false negatives usually, but not always, indicated by abnormally high ABIs (> 1.40). Such results and suspicions merit further investigation and higher level studies.
If ABIs are abnormal the next step is generally a lower limb doppler ultrasound examination to look at site and extent of atherosclerosis. Other imaging can be performed by angiography, where a catheter is inserted into the common femoral artery and selectively guided to the artery in question. While injecting a radiodense contrast agent an X-ray is taken. Any flow limiting stenoses found in the x-ray can be identified and treated by atherectomy, angioplasty or stenting. Contrast angiography is the most readily available and widely used imaging technique.
Modern multislice computerized tomography (CT) scanners provide direct imaging of the arterial system as an alternative to angiography.
Magnetic resonance angiography (MRA) is a noninvasive diagnostic procedure that uses a combination of a large magnet, radio frequencies, and a computer to produce detailed images to provide pictures of blood vessels inside the body. The advantages of MRA include its safety and ability to provide high-resolution three-dimensional (3D) imaging of the entire abdomen, pelvis and lower extremities in one sitting.
Diagnosis can be based on a physical exam, blood test, EKG and the results of these tests (among other exams).
Diabetics, despite not having clinically detectable atherosclerotic disease, have more severe debility from atherosclerotic events over time than non-diabetics who have already had atherosclerotic events. Thus diabetes has been upgraded to be viewed as an advanced atherosclerotic disease equivalent.
In 2011, coronary atherosclerosis was one of the top ten most expensive conditions seen during inpatient hospitalizations in the U.S., with aggregate inpatient hospital costs of $10.4 billion.
It is not clear if screening for disease is useful as it has not been properly studied.
In developed countries, with improved public health, infection control and increasing life spans, atheroma processes have become an increasingly important problem and burden for society.
Atheromata continue to be the primary underlying basis for disability and death, despite a trend for gradual improvement since the early 1960s (adjusted for patient age). Thus, increasing efforts towards better understanding, treating and preventing the problem are continuing to evolve.
According to United States data, 2004, for about 65% of men and 47% of women, the first symptom of cardiovascular disease is myocardial infarction (heart attack) or sudden death (death within one hour of symptom onset).
A significant proportion of artery flow-disrupting events occur at locations with less than 50% lumenal narrowing. Cardiac stress testing, traditionally the most commonly performed noninvasive testing method for blood flow limitations, generally only detects lumen narrowing of ~75% or greater, although some physicians advocate nuclear stress methods that can sometimes detect as little as 50%.
The sudden nature of the complications of pre-existing atheroma, vulnerable plaque (non-occlusive or soft plaque), have led, since the 1950s, to the development of intensive care units and complex medical and surgical interventions. Angiography and later cardiac stress testing was begun to either visualize or indirectly detect stenosis. Next came bypass surgery, to plumb transplanted veins, sometimes arteries, around the stenoses and more recently angioplasty, now including stents, most recently drug coated stents, to stretch the stenoses more open.
Yet despite these medical advances, with success in reducing the symptoms of angina and reduced blood flow, atheroma rupture events remain the major problem and still sometimes result in sudden disability and death despite even the most rapid, massive and skilled medical and surgical intervention available anywhere today. According to some clinical trials, bypass surgery and angioplasty procedures have had at best a minimal effect, if any, on improving overall survival. Typically mortality of bypass operations is between 1 and 4%, of angioplasty between 1 and 1.5%.
Additionally, these vascular interventions are often done only after an individual is symptomatic, often already partially disabled, as a result of the disease. It is also clear that both angioplasty and bypass interventions do not prevent future heart attack.
The older methods for understanding atheroma, dating to before World War II, relied on autopsy data. Autopsy data has long shown initiation of fatty streaks in later childhood with slow asymptomatic progression over decades.
One way to see atheroma is the very invasive and costly IVUS ultrasound technology; it gives us the precise volume of the inside intima plus the central media layers of about of artery length. Unfortunately, it gives no information about the structural strength of the artery. Angiography does not visualize atheroma; it only makes the blood flow within blood vessels visible. Alternative methods that are non or less physically invasive and less expensive per individual test have been used and are continuing to be developed, such as those using computed tomography (CT; led by the electron beam tomography form, given its greater speed) and magnetic resonance imaging (MRI). The most promising since the early 1990s has been EBT, detecting calcification within the atheroma before most individuals start having clinically recognized symptoms and debility. Interestingly, statin therapy (to lower cholesterol) does not slow the speed of calcification as determined by CT scan. MRI coronary vessel wall imaging, although currently limited to research studies, has demonstrated the ability to detect vessel wall thickening in asymptomatic high risk individuals. As a non-invasive, ionising radiation free technique, MRI based techniques could have future uses in monitoring disease progression and regression. Most visualization techniques are used in research, they are not widely available to most patients, have significant technical limitations, have not been widely accepted and generally are not covered by medical insurance carriers.
From human clinical trials, it has become increasingly evident that a more effective focus of treatment is slowing, stopping and even partially reversing the atheroma growth process. There are several prospective epidemiologic studies including the Atherosclerosis Risk in Communities (ARIC) Study and the Cardiovascular Health Study (CHS), which have supported a direct correlation of Carotid Intima-media thickness (CIMT) with myocardial infarction and stroke risk in patients without cardiovascular disease history. The ARIC Study was conducted in 15,792 individuals between 5 and 65 years of age in four different regions of the US between 1987 and 1989. The baseline CIMT was measured and measurements were repeated at 4- to 7-year intervals by carotid B mode ultrasonography in this study. An increase in CIMT was correlated with an increased risk for CAD. The CHS was initiated in 1988, and the relationship of CIMT with risk of myocardial infarction and stroke was investigated in 4,476 subjects ≤65 years of age. At the end of approximately six years of follow-up, CIMT measurements were correlated with cardiovascular events.
Paroi artérielle et Risque Cardiovasculaire in Asia Africa/Middle East and Latin America (PARC-AALA) is another important large-scale study, in which 79 centers from countries in Asia, Africa, the Middle East, and Latin America participated, and the distribution of CIMT according to different ethnic groups and its association with the Framingham cardiovascular score was investigated. Multi-linear regression analysis revealed that an increased Framingham cardiovascular score was associated with CIMT, and carotid plaque independent of geographic differences.
Cahn et al. prospectively followed-up 152 patients with coronary artery disease for 6–11 months by carotid artery ultrasonography and noted 22 vascular events (myocardial infarction, transient ischemic attack, stroke, and coronary angioplasty) within this time period. They concluded that carotid atherosclerosis measured by this non-interventional method has prognostic significance in coronary artery patients.
In the Rotterdam Study, Bots et al. followed 7,983 patients >55 years of age for a mean period of 4.6 years, and reported 194 incident myocardial infarctions within this period. CIMT was significantly higher in the myocardial infarction group compared to the other group. Demircan et al. found that the CIMT of patients with acute coronary syndrome were significantly increased compared to patients with stable angina pectoris.
It has been reported in another study that a maximal CIMT value of 0.956 mm had 85.7% sensitivity and 85.1% specificity to predict angiographic CAD. The study group consisted of patients admitted to the cardiology outpatient clinic with symptoms of stable angina pectoris. The study showed CIMT was higher in patients with significant CAD than in patients with non-critical coronary lesions. Regression analysis revealed that thickening of the mean intima-media complex more than 1.0 was predictive of significant CAD our patients. There was incremental significant increase in CIMT with the number coronary vessel involved. In accordance with the literature, it was found that CIMT was significantly higher in the presence of CAD. Furthermore, CIMT was increased as the number of involved vessels increased and the highest CIMT values were noted in patients with left main coronary involvement. However, human clinical trials have been slow to provide clinical & medical evidence, partly because the asymptomatic nature of atheromata make them especially difficult to study. Promising results are found using carotid intima-media thickness scanning (CIMT can be measured by B-mode ultrasonography), B-vitamins that reduce a protein corrosive, homocysteine and that reduce neck carotid artery plaque volume and thickness, and stroke, even in late-stage disease.
Additionally, understanding what drives atheroma development is complex with multiple factors involved, only some of which, such as lipoproteins, more importantly lipoprotein subclass analysis, blood sugar levels and hypertension are best known and researched. More recently, some of the complex immune system patterns that promote, or inhibit, the inherent inflammatory macrophage triggering processes involved in atheroma progression are slowly being better elucidated in animal models of atherosclerosis.
The U.S. Preventive Services Task Force in 2008 strongly recommends routine screening for men 35 years and older and women 45 years and older for lipid disorders and the treatment of abnormal lipids in people who are at increased risk of coronary heart disease. They also recommend routinely screening men aged 20 to 35 years and women aged 20 to 45 years if they have other risk factors for coronary heart disease. In 2016 they concluded that testing the general population under the age of 40 without symptoms is of unclear benefit.
In Canada, screening is recommended for men 40 and older and women 50 and older. In those with normal cholesterol levels, screening is recommended once every five years. Once people are on a statin further testing provides little benefit except to possibly determine compliance with treatment.
Kidney failure is very common in patients suffering from congestive heart failure. It was shown that kidney failure complicates one-third of all admissions for heart failure, which is the leading cause of hospitalization in the United States among adults over 65 years old. These complications led to longer hospital stay, higher mortality, and greater chance for readmission. Another study found that 39% of patients in NYHA class 4 and 31% of patients in NYHA class 3 had severely impaired kidney function. Similarly, kidney failure can have deleterious effects on cardiovascular function. It was estimated that about 44% of deaths in patients with end-stage kidney failure (ESKF) are due to cardiovascular disease.
Treatment is often in the form of preventative measures of prophylaxis. Drug therapy for underlying conditions, such as drugs for the treatment of high cholesterol, drugs to treat high blood pressure (ACE inhibitors), and anti-coagulant drugs, are often prescribed to help prevent arteriosclerosis. Lifestyle changes such as increasing exercise, stopping smoking, and moderating alcohol intake are also advised. Experimental treatments include senolytic drugs, or drugs that selectively eliminate senescent cells, which enhance vascular reactivity and reduce vascular calcification in a mouse model of atherosclerosis, as well as improving cardiovascular function in old mice.
There are a variety of types of surgery:
- Angioplasty and stent placement: A catheter is first inserted into the blocked/narrowed part of your artery, followed by a second one with a deflated balloon which is passed through the catheter into the narrowed area. The balloon is then inflated, pushing the deposits back against the arterial walls, and then a mesh tube is usually left behind to prevent the artery from retightening.
- Coronary artery bypass surgery: This surgery creates a new pathway for blood to flow to the heart. Taking a healthy piece of vein, the surgeon attaches it to the coronary artery, just above and below the blockage to allow bypass.
- Endarterectomy: This is the general procedure for the surgical removal of plaque from the artery that has become narrowed, or blocked.
- Thrombolytic therapy: is a treatment used to break up masses of plaque inside the arteries via intravenous clot-dissolving medicine.
For most patients, health care providers diagnose high blood pressure when blood pressure readings are consistently 140/90 mmHg or above. A blood pressure test can be done in a health care provider’s office or clinic. To track blood pressure readings over a period of time, the health care provider may ask the patient to come into the office on different days and at different times. The health care provider also may ask the patient to check readings at home or at other locations that have blood pressure equipment and to keep a written log of results. The health care provider usually takes 2–3 readings at several medical appointments to diagnose high blood pressure. Using the results of the blood pressure test, the health care provider will diagnose prehypertension or high blood pressure if:
- For an adult, systolic or diastolic readings are consistently higher than 120/80 mmHg.
- A child’s blood pressure numbers are outside average numbers for children of the same age, gender, and height.
Once the health care provider determines the severity, he or she can order additional tests to determine if the blood pressure is due to other conditions or medicines or if there is primary high blood pressure. Health care providers can use this information to develop a treatment plan.
Because artery walls enlarge at locations with atheroma, detecting atheroma before death and autopsy has long been problematic at best. Most methods have focused on the openings of arteries; highly relevant, yet totally miss the atheroma within artery walls.
Historically, arterial wall fixation, staining and thin section has been the gold standard for detection and description of atheroma, after death and autopsy. With special stains and examination, micro calcifications can be detected, typically within smooth muscle cells of the arterial media near the fatty streaks within a year or two of fatty streaks forming.
Interventional and non-interventional methods to detect atherosclerosis, specifically vulnerable plaque (non-occlusive or soft plaque), are widely used in research and clinical practice today.
Carotid Intima-media thickness Scan (CIMT can be measured by B-mode ultrasonography) measurement has been recommended by the American Heart Association as the most useful method to identify atherosclerosis and may now very well be the gold standard for detection.
IVUS is the current most sensitive method detecting and measuring more advanced atheroma within living individuals, though it is typically not used until decades after atheroma begin forming due to cost and body invasiveness.
CT scans using state of the art higher resolution spiral, or the higher speed EBT, machines have been the most effective method for detecting calcification present in plaque. However, the atheroma have to be advanced enough to have relatively large areas of calcification within them to create large enough regions of ~130 Hounsfield units which a CT scanner's software can recognize as distinct from the other surrounding tissues. Typically, such regions start occurring within the heart arteries about 2–3 decades after atheroma start developing. Hence the detection of much smaller plaques than previously possible is being developed by some companies, such as Image Analysis. The presence of smaller, spotty plaques may actually be more dangerous for progressing to acute myocardial infarction.
Arterial ultrasound, especially of the carotid arteries, with measurement of the thickness of the artery wall, offers a way to partially track the disease progression. As of 2006, the thickness, commonly referred to as IMT for intimal-medial thickness, is not measured clinically though it has been used by some researchers since the mid-1990s to track changes in arterial walls. Traditionally, clinical carotid ultrasounds have only estimated the degree of blood lumen restriction, stenosis, a result of very advanced disease. The National Institute of Health did a five-year $5 million study, headed by medical researcher Kenneth Ouriel, to study intravascular ultrasound techniques regarding atherosclerotic plaque. More progressive clinicians have begun using IMT measurement as a way to quantify and track disease progression or stability within individual patients.
Angiography, since the 1960s, has been the traditional way of evaluating for atheroma. However, angiography is only motion or still images of dye mixed with the blood with the arterial lumen and never show atheroma; the wall of arteries, including atheroma with the arterial wall remain invisible. The limited exception to this rule is that with very advanced atheroma, with extensive calcification within the wall, a halo-like ring of radiodensity can be seen in most older humans, especially when arterial lumens are visualized end-on. On cine-floro, cardiologists and radiologists typically look for these calcification shadows to recognize arteries before they inject any contrast agent during angiograms.
The gold standard for measuring endothelial function is angiography with acetylcholine injection. Previously, this was not done outside of research because of the invasive and complex nature of the procedure. As mentioned above, the use of acetylcholine injections to test vasodilation is now safely used for procedures where arterial catheterization is employed (this method is less frequently used though, so overall acetylcholine is not used very often in this way).
A noninvasive method to measure endothelial dysfunction is % Flow Mediated Dilation (FMD) as measured by Brachial Artery Ultrasound Imaging (BAUI). Current measurements of endothelial function via FMD vary due to technical and physiological factors. For example, FMD is largely affected by hormones, especially for women. FMD values can differ for the same woman if she is in different phases of her menstrual cycle during the time of measurement. When using this technique on people who suffer from things like heart failure, renal failure, or hypertension, their increased sympathetic tone can often falsify the results. Furthermore, a negative correlation between percent flow mediated dilation and baseline artery size is recognised as a fundamental scaling problem, leading to biased estimates of endothelial function. For research on FMD an ANCOVA approach to adjusting FMD for variation in baseline diameter is more appropriate. Another challenge of FMD is variability across centers and the requirement of highly qualified technicians to perform the procedure.
A non-invasive, FDA-approved device for measuring endothelial function that works by measuring Reactive Hyperemia Index (RHI) is Itamar Medical's EndoPAT™. It has shown an 80% sensitivity and 86% specificity to diagnose coronary artery disease when compared against the gold standard, acetylcholine angiogram. This results suggests that this peripheral test reflects the physiology of the coronary endothelium. Endopat has been tested in several clinical trials at multiple centers (including major cohort studies such as the Framingham Heart Study, the Heart SCORE study, and the Gutenberg Health Study). The results from clinical trials have shown that EndoPAT™ is useful for risk evaluation, stratification and prognosis of getting major cardiovascular events (MACE).
Since NO maintains low tone and high compliance of the small arteries at rest a reduction of age-dependent small artery compliance is a marker for endothelial dysfunction that is associated with both functional and structural changes in the microcirculation that are predictive of subsequent morbid events Small artery compliance or stiffness can be assessed simply and at rest and can be distinguished from large artery stiffness by use of pulsewave analysis with the CV Profilor.
Classically, hypercholesterolemia was categorized by lipoprotein electrophoresis and the Fredrickson classification. Newer methods, such as "lipoprotein subclass analysis", have offered significant improvements in understanding the connection with atherosclerosis progression and clinical consequences. If the hypercholesterolemia is hereditary (familial hypercholesterolemia), more often a family history of premature, earlier onset atherosclerosis is found.
It can be difficult to make a Vascular disease diagnosis since there are a variety of symptoms that a person can have, also family history and a physical examination are important. The physical exam may be different depending on the type of vascular disease. In the case of a peripheral vascular disease the physical exam consists in checking the blood flow in the legs.
A 2015 SBU-report including a systematic review of non-chemical riskfactors for occupation cardiovascular disease found an association between certain occupational risk factors and developing cardiovascular disease in those:
- With mentally stressfull work with a lack of control of their own working situation — with a effort-reward imbalance
- Who experience low social support at work; who experience injustice or experience insufficient opportunities for personal development; or those who experience job insecurity
- Those who work night schedules; or have long working weeks
- Those who are exposed to noise
Specifically the risk of stroke was also increased by:
- Exposure to ionizing radiation
Hypertension develops more often in those who experience job strain and who have shift-work. Differences between women and men in risk are small, however men risk suffering and dieing of heart attacks or stroke twice as often as women during working life.
A 2017 SBU report found evidence that workplace exposure to silica dust, engine exhaust or welding fumes is associated with heart disease. Associations also exist for exposure to arsenic, benzopyrenes, lead, dynamite, carbon disulphide, carbon monoxide, metalworking fluids and occupational exposure to tobacco smoke. Working with the electrolytic production of aluminium or the production of paper when the sulphate pulping process is used is associated with heart disease. An association was also found between heart disease and exposure to compounds which are no longer permitted in certain work environments, such as phenoxy acids containing TCDD(dioxin) or asbestos.
Workplace exposure to silica dust or asbestos is also associated with pulmonary heart disease. There is evidence that workplace exposure to lead, carbon disulphide, phenoxyacids containing TCDD, as well as working in an environment where aluminium is being electrolytically produced, is associated with stroke.
Guidelines for referral to a nephrologist vary between countries. Though most would agree that nephrology referral is required by Stage 4 CKD (when eGFR/1.73m is less than 30 ml/min; or decreasing by more than 3 ml/min/year); and may be useful at an earlier stage (e.g. CKD3) when urine albumin-to-creatinine ratio is more than 30 mg/mmol, when blood pressure is difficult to control, or when hematuria or other findings suggest either a primarily glomerular disorder or secondary disease amenable to specific treatment. Other benefits of early nephrology referral include proper patient education regarding options for renal replacement therapy as well as pre-emptive transplantation, and timely workup and placement of an arteriovenous fistula in those patients opting for future hemodialysis
Treatment varies with the type of vascular disease; in the case of renal artery disease, information from a meta-analysis indicated that balloon angioplasty results in improvement of diastolic blood pressure and a reduction in antihypertensive drug requirements. In the case of peripheral artery disease, preventing complications is important; without treatment, sores or gangrene (tissue death) may occur. Among the treatments are:
- Quitting smoking
- Lowering cholesterol
- Lower blood pressure
- Lower blood glucose
- Physical activity