Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
80% of cases in the United States are diagnosed by mammography screening.
While cancer is generally considered a disease of old age, children can also develop cancer. In contrast to adults, carcinomas are exceptionally rare in children..
The two biggest risk factors for ovarian carcinoma are age and family history.
Checking the cervix by the Papanicolaou test, or Pap test, for cervical cancer has been credited with dramatically reducing the number of cases of and mortality from cervical cancer in developed countries. Pap test screening every three to five years with appropriate follow-up can reduce cervical cancer incidence up to 80%. Abnormal results may suggest the presence of precancerous changes, allowing examination and possible preventive treatment. The treatment of low-grade lesions may adversely affect subsequent fertility and pregnancy. Personal invitations encouraging women to get screened are effective at increasing the likelihood they will do so. Educational materials also help increase the likelihood women will go for screening, but they are not as effective as invitations.
According to the 2010 European guidelines, the age at which to start screening ranges between 20 and 30 years of age, but preferentially not before age 25 or 30 years, and depends on burden of the disease in the population and the available resources.
In the United States, screening is recommended to begin at age 21, regardless of age at which a woman began having sex or other risk factors. Pap tests should be done every three years between the ages of 21 and 65. In women over the age of 65, screening may be discontinued if no abnormal screening results were seen within the previous 10 years and no history of CIN 2 or higher exists. HPV vaccination status does not change screening rates. Screening can occur every 5 years between ages 30 and 65 when a combination of cervical cytology screening and HPV testing is used and this is preferred. However, it is acceptable to screen this age group with a Pap test alone every three years. Screening is not beneficial before age 25 as the rate of disease is low. Screening is not beneficial in women older than 60 years if they have a history of negative results. The American Society of Clinical Oncology (ASCO) guideline has recommend for different levels of resource availability.
Liquid-based cytology is another potential screening method. Although it was probably intended to improve on the accuracy of the Pap test, its main advantage has been to reduce the number of inadequate smears from around 9% to around 1%. This reduces the need to recall women for a further smear. The United States Preventive Services Task Force supports screening every 5 years in those who are between 30 and 65 years when cytology is used in combination with HPV testing.
Pap tests have not been as effective in developing countries. This is in part because many of these countries have an impoverished health care infrastructure, too few trained and skilled professionals to obtain and interepret Pap tests, uninformed women who get lost to follow-up, and a lengthy turn-around time to get results. These realities have resulted in the investigation of cervical screening approaches that use fewer resources and offer rapid results such as visual inspection with acetic acid or HPV DNA testing.
Prognosis can range considerably for patients, depending where on the scale they have been staged. Generally speaking, the earlier the cancer is diagnosed, the better the prognosis. The overall 5-year survival rate for all stages of penile cancer is about 50%.
The 1973 WHO grading system for TCCs (papilloma, G1, G2 or G3) is most commonly used despite being superseded by the 2004 WHO grading (papillary neoplasm of low malignant potential [PNLMP], low grade, and high grade papillary carcinoma).
HGPIN in isolation does not require treatment. In prostate biopsies it is not predictive of prostate cancer in one year if the prostate was well-sampled, i.e. if there were 8 or more cores.
The exact timing of repeat biopsies remains an area of controversy, as the time required for, and probability of HGPIN transformations to prostate cancer are not well understood.
Overall, five-year survival rates for vulvar cancer are around 78% but may be affected by individual factors including cancer stage, cancer type, patient age and general medical health. Five-year survival is greater than 90% for patients with stage I lesions but decreases to 20% when pelvic lymph nodes are involved. Lymph node involvement is the most important predictor of prognosis. Thus, early diagnosis is important.
Staging of carcinoma refers to the process of combining physical/clinical examination, pathological review of cells and tissues, surgical techniques, laboratory tests, and imaging studies in a logical fashion to obtain information about the size of the neoplasm and the extent of its invasion and metastasis.
Carcinomas are usually staged with Roman numerals. In most classifications, Stage I and Stage II carcinomas are confirmed when the tumor has been found to be small and/or to have spread to local structures only. Stage III carcinomas typically have been found to have spread to regional lymph nodes, tissues, and/or organ structures, while Stage IV tumors have already metastasized through the blood to distant sites, tissues, or organs.
In some types of carcinomas, Stage 0 carcinoma has been used to describe carcinoma "in situ", and occult carcinomas detectable only via examination of sputum for malignant cells (in lung carcinomas).
In more recent staging systems, substages (a, b, c) are becoming more commonly used to better define groups of patients with similar prognosis or treatment options.
Carcinoma stage is the variable that has been most consistently and tightly linked to the prognosis of the malignancy.
The criteria for staging can differ dramatically based upon the organ system in which the tumor arises. For example, the colon and bladder cancer staging system relies on depth of invasion, staging of breast carcinoma is more dependent on the size of the tumor, and in renal carcinoma, staging is based on both the size of the tumor and the depth of the tumor invasion into the renal sinus. Carcinoma of the lung has a more complicated staging system, taking into account a number of size and anatomic variables.
The UICC/AJCC TNM systems are most often used. For some common tumors, however, classical staging methods (such as the Dukes classification for colon cancer) are still used.
According to the NIH Consensus Conference , if DCIS is allowed to go untreated, the natural course or natural history varies according to the grade of the DCIS. Unless treated, approximately 60 percent of low-grade DCIS lesions will have become invasive at 40 years follow-up. High-grade DCIS lesions that have been inadequately resected and not given radiotherapy have a 50 percent risk of becoming invasive breast cancer within seven years. Approximately half of low-grade DCIS detected at screening will represent overdiagnosis, but overdiagnosis of high-grade DCIS is rare. The natural history of intermediate-grade DCIS is difficult to predict. Approximately one-third of malignant calcification clusters detected at screening mammography already have an invasive focus.
The prognosis of IDC depends, in part, on its histological subtype. Mucinous, papillary, cribriform, and tubular carcinomas have longer survival, and lower recurrence rates. The prognosis of the most common form of IDC, called "IDC Not Otherwise Specified", is intermediate. Finally, some rare forms of breast cancer (e.g., sarcomatoid carcinoma, inflammatory carcinoma) have a poor prognosis. Regardless of the histological subtype, the prognosis of IDC depends also on tumor size, presence of cancer in the lymph nodes, histological grade, presence of cancer in small vessels (vascular invasion), expression of hormone receptors and of oncogenes like HER2/neu.
These parameters can be entered into models that provide a statistical probability of systemic spread. The probability of systemic spread is a key factor in determining whether radiation and chemotherapy are worthwhile. The individual parameters are important also because they can predict how well a cancer will respond to specific chemotherapy agents.
Overall, the 5-year survival rate of invasive ductal carcinoma was approximately 85% in 2003.
Anatomical staging supplemented preclinical staging starting in 1988. FIGO’s revised TNM classification system uses tumor size (T), lymph node involvement (N) and presence or absence of metastasis (M) as criteria for staging. Stages I and II describe the early stages of vulvar cancer that still appear to be confined to the site of origin. Stage III cancers include greater disease extension to neighboring tissues and inguinal lymph nodes on one side. Stage IV indicates metastatic disease to inguinal nodes on both sides or distant metastases.
GCNIS is not palpable, and not visible on macroscopic examination of testicular tissue. Microscopic examination of affected testicular tissue most commonly shows germ cells with enlarged hyperchromatic nuclei with prominent nucleoli and clear cytoplasm. These cells are typically arranged along the basement membrane of the tubule, and mitotic figures are frequently seen. The sertoli cells are pushed toward the lumen by the neoplastic germ cells, and spermatogenesis is almost always absent in the affected tubules. Pagetoid spread of GCNIS into the rete testis is common. Immunostaining with placental alkaline phosphatase (PLAP) highlights GCNIS cell membranes in 95 percent of cases. OCT3/4 is a sensitive and specific nuclear stain of GCNIS.
There are several treatment options for penile cancer, depending on staging. They include surgery, radiation therapy, chemotherapy, and biological therapy. The most common treatment is one of five types of surgery:
- Wide local excision—the tumor and some surrounding healthy tissue are removed
- Microsurgery—surgery performed with a microscope is used to remove the tumor and as little healthy tissue as possible
- Laser surgery—laser light is used to burn or cut away cancerous cells
- Circumcision—cancerous foreskin is removed
- Amputation (penectomy)—a partial or total removal of the penis, and possibly the associated lymph nodes.
Radiation therapy is usually used adjuvantly with surgery to reduce the risk of recurrence. With earlier stages of penile cancer, a combination of topical chemotherapy and less invasive surgery may be used. More advanced stages of penile cancer usually require a combination of surgery, radiation and chemotherapy.
In addition to all the above, treatment of the underlying disease like brucellosis, is important to limit disease recurrence.
LCIS (lobular neoplasia is considered pre-cancerous) is an indicator (marker) identifying women with an increased risk of developing invasive breast cancer. This risk extends more than 20 years. Most of the risk relates to subsequent invasive ductal carcinoma rather than to invasive lobular carcinoma.
While older studies have shown that the increased risk is equal for both breasts, a more recent study suggests that the ipsilateral (same side) breast may be at greater risk.
The criteria for diagnosing BACs have changed since 1999. Under the new definition, BAC is defined as a tumor that grows in a lepidic (that is, a scaly covering) fashion along pre-existing airway structures, without detectable invasion or destruction of the underlying tissue, blood vessels, or lymphatics. Because invasion must be ruled out, BAC can be diagnosed only after complete sectioning and examination of the entire tumor, not using biopsy or cytology samples. BAC is considered a pre-invasive malignant lesion that, after further mutation and progression, eventually generates an invasive adenocarcinoma. Therefore, it is considered a form of carcinoma "in situ" (CIS).
Cervical cancer is staged by the International Federation of Gynecology and Obstetrics (FIGO) staging system, which is based on clinical examination, rather than surgical findings. It allows only these diagnostic tests to be used in determining the stage: palpation, inspection, colposcopy, endocervical curettage, hysteroscopy, cystoscopy, proctoscopy, intravenous urography, and X-ray examination of the lungs and skeleton, and cervical conization.
HGPIN is diagnosed from tissue by a pathologist, which may come from:
- a needle biopsy taken via the rectum and,
- surgical removal of prostate tissue:
- transurethral resection of the prostate - removal of extra prostate tissue to improve urination (a treatment for benign prostatic hyperplasia),
- radical prostatectomy - complete removal of prostate and seminal vesicles (a treatment for prostate cancer).
Blood tests for prostate specific antigen (PSA), digital rectal examination, ultrasound scanning of the prostate via the rectum, fine needle aspiration or medical imaging studies (such as magnetic resonance imaging) are "not" useful for diagnosing HGPIN.
Carcinoma "in situ" is, by definition, a localized phenomenon, with no potential for metastasis unless it progresses into cancer. Therefore, its removal eliminates the risk of subsequent progression into a life-threatening condition.
Some forms of CIS (e.g., colon polyps and polypoid tumours of the bladder) can be removed using an endoscope, without conventional surgical resection. Dysplasia of the uterine cervix is removed by excision (cutting it out) or by burning with a laser. Bowen's disease of the skin is removed by excision. Other forms require major surgery, the best known being intraductal carcinoma of the breast (also treated with radiotherapy). One of the most dangerous forms of CIS is the "pneumonic form" of BAC of the lung, which can require extensive surgical removal of large parts of the lung. When too large, it often cannot be completely removed, with eventual disease progression and death of the patient.
Because DCIS is normally found early and it is treated or managed, it is difficult to say what occurs if left untreated. About 2% of women who are diagnosed with this condition and treated died within 10 years. Biomarkers can identify which women who were initially diagnosed with DCIS are at high or low risk of subsequent invasive cancer.
The first step to diagnosing tonsil carcinoma is to obtain an accurate history from the patient. The physician will also examine the patient for any indicative physical signs. A few tests then, maybe conducted depending on the progress of the disease or if the doctor feels the need for. The tests include:
Fine needle aspiration, blood tests, MRI, x-rays and PET scan.
Transitional refers to the histological subtype of the cancerous cells as seen under a microscope.
Diagnosis may include a fluorescence in situ hybridization (FISH) test, computed tomography urography (CTU), magnetic resonance urography (MRU), intravenous pyelography (IVP) x-ray, ureteroscopy, or biopsy.
As of 2010 there is insufficient evidence to determine if screening for bladder cancer in people without symptoms is effective or not.
In 2013 a preliminary, small study of 98 samples of urine, all from men—24 who had cancer, and 74 with bladder-related problems but no cancer yet used a gas chromatograph to successfully examine the vapor from heated urine samples to identify cancer.
The basis of deciding the T stage depends on physical examination and imaging of the tumor.
Cystoscopy, a procedure in which a flexible tube bearing a camera and various instruments is introduced into the bladder through the urethra allows diagnosis and by biopsying suspicious lesions.
The gold standard for diagnosing bladder cancer is biopsy obtained during cystoscopy. Urine cytology can be obtained in voided urine or at the time of the cystoscopy ("bladder washing"). Cytology is not very sensitive (a negative result cannot reliably exclude bladder cancer). There are newer non-invasive urine bound markers available as aids in the diagnosis of bladder cancer, including human complement factor H-related protein, high-molecular-weight carcinoembryonic antigen, and nuclear matrix protein 22 (NMP22). NMP22 is also available as a prescription home test. Other non-invasive urine based tests include the CertNDx Bladder Cancer Assay, which combines FGFR3 mutation detection with protein and DNA methylation markers to detect cancers across stage and grade, UroVysion, and Cxbladder.
The diagnosis of bladder cancer can also be done with a Hexvix/Cysview guided fluorescence cystoscopy (blue light cystoscopy, Photodynamic diagnosis), as an adjunct to conventional white-light cystoscopy. This procedure improves the detection of bladder cancer and reduces the rate of early tumor recurrence, compared with white light cystoscopy alone. Cysview cystoscopy detects more cancer and reduces recurrence. Cysview is marketed in Europe under the brand name Hexvix
However, visual detection in any form listed above, is not sufficient for establishing pathological classification, cell type or the stage of the present tumor. A so-called cold cup biopsy during an ordinary cystoscopy (rigid or flexible) will not be sufficient for pathological staging either. Hence, a visual detection needs to be followed by transurethral surgery. The procedure is called transurethral resection of bladder tumor (TURBT). Further, bimanual examination should be carried out before and after the TURBT to assess whether there is a palpable mass or if the tumour is fixed ("tethered") to the pelvic wall. The pathological classification obtained by the TURBT-procedure, is of fundamental importance for making the appropriate choice of ensuing treatment and/or follow-up routines.
Tumor size staging and node involvement staging can be combined into a single clinical staging number.