Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Screening ECGs (either at rest or with exercise) are not recommended in those without symptoms who are at low risk. This includes those who are young without risk factors. In those at higher risk the evidence for screening with ECGs is inconclusive.
Additionally echocardiography, myocardial perfusion imaging, and cardiac stress testing is not recommended in those at low risk who do not have symptoms.
Some biomarkers may add to conventional cardiovascular risk factors in predicting the risk of future cardiovascular disease; however, the clinical value of some biomarkers is questionable.
The NIH recommends lipid testing in children beginning at the age of 2 if there is a family history of heart disease or lipid problems. It is hoped that early testing will improve lifestyle factors in those at risk such as diet and exercise.
Screening and selection for primary prevention interventions has traditionally been done through absolute risk using a variety of scores (ex. Framingham or Reynolds risk scores). This stratification has separated people who receive the lifestyle interventions (generally lower and intermediate risk) from the medication (higher risk). The number and variety of risk scores available for use has multiplied, but their efficacy according to a 2016 review was unclear due to lack of external validation or impact analysis. Risk stratification models often lack sensitivity for population groups and do not account for the large number of negative events among the intermediate and low risk groups. As a result, future preventative screening appears to shift toward applying prevention according to randomized trial results of each intervention rather than large-scale risk assessment.
A 2007 study followed 112 individuals for a mean of 12 years (mean age 25.3, range 12–71). No patient died during follow-up, but several required medical interventions. The mean final heights were 167 and 153 cm for men and women, respectively, which is approximately 2 standard deviations below normal.
NS can be confirmed genetically by the presence of any of the known mutations listed above. However, despite identification of fourteen causative genes, the absence of a known mutation will not exclude the diagnosis, as there are more, as-yet-undiscovered genes that cause NS. Thus, the diagnosis of NS is still based on clinical features. In other words, it is made when a physician feels that a patient has enough of the features to warrant the label. The principal values of making a genetic diagnosis are that it guides additional medical and developmental evaluations, it excludes other possible explanations for the features, and it allows more accurate recurrence risk estimates. With more genotype-phenotype correlation studies being performed, a positive genetic diagnosis will help the clinician to be aware of possible anomalies specific to that certain gene mutation. For example, there is an increase in hypertrophic cardiomyopathy in patients with a mutation of "KRAS" and an increased risk of juvenile myelomonocytic leukemia for a mutation of "PTPN11". In the future, studies may lead to a targeted management of NS symptoms that depends on what genetic mutation a patient has.
Radiologic diagnosis
When treated early, that is, before the onset of pulmonary hypertension, a good outcome is possible in patients with Shone’s syndrome. However, other surgical methods can be employed depending upon the patient’s medical background. The single most important determinant of poor outcome during the surgical management of patients with Shone's syndrome is the degree of involvement of the mitral valve and the presence of secondary pulmonary hypertension.
MR Imaging is best suited to evaluate patients with Shone's complex. Routine blood tests should be done prior to cardiac catheterization. The surgeons will repair the mitral valve and al the partial surgical removal of supramitral ring is done. This surgical method is preferred to the valve replacement procedure.
Classifying cardiac lesions in infants is quite difficult, and accurate diagnosis is essential. The diagnosis of Shone’s complex requires an ultrasound of the heart (echocardiogram) and a cardiac catheterization procedure, that is, insertion of a device through blood vessels in the groin to the heart that helps identify heart anatomy.
There are two main types of cardiomegaly:
Dilated cardiomyopathy is the most common type of cardiomegaly. In this condition, the walls of the left and/or right ventricles of the heart become thin and stretched. The result is an enlarged heart.
In the other types of cardiomegaly, the heart's large muscular left ventricle becomes abnormally thick. Hypertrophy is usually what causes left ventricular enlargement. Hypertrophic cardiomyopathy is typically an inherited condition.
There are many techniques and tests used to diagnose an enlarged heart. Below is a list of tests and how they test for cardiomegaly:
1. Chest X-Ray: X-ray images help see the condition of the lungs and heart. If the heart is enlarged on an X-ray, other tests will usually be needed to find the cause. A useful measurement on X-ray is the "cardio-thoracic ratio", which is the transverse diameter of the heart, compared with that of the thoracic cage." These diameters are taken from PA chest x-rays using the widest point of the chest and measuring as far as the lung pleura, not the lateral skin margins. If the cardiac thoracic ratio is greater than 50%, pathology is suspected, assuming the x-ray has been taken correctly. The measurement was first proposed in 1919 to screen military recruits. A newer approach to using these x-rays for evaluating heart health, takes the ratio of heart area to chest area and has been called the two-dimensional cardiothoracic ratio.
2. Electrocardiogram: This test records the electrical activity of the heart through electrodes attached to the person's skin. Impulses are recorded as waves and displayed on a monitor or printed on paper. This test helps diagnose heart rhythm problems and damage to a person's heart from a heart attack.
3. Echocardiogram: This test for diagnosing and monitoring an enlarged heart uses sound waves to produce a video image of the heart. With this test, the four chambers of the heart can be evaluated.
- The results of these tests can be used to see how efficiently the heart is pumping, determine which chambers of the heart are enlarged, look for evidence of previous heart attacks and determine if a person has congenital heart disease.
4. Stress test: A stress test, also called an exercise stress test, provides information about how well the heart works during physical activity.
- An exercise stress test usually involves walking on a treadmill or riding a stationary bike while the heart rhythm, blood pressure, and breathing are monitored.
5. Cardiac computerized tomography (CT) or magnetic resonance imaging (MRI). In a cardiac CT scan, one lies on a table inside a machine called a gantry. An X-ray tube inside the machine rotates around the body and collects images of the heart and chest.
- In a cardiac MRI, one lies on a table inside a long tube-like machine that uses a magnetic field and radio waves to produce signals that create images of the heart.
6. Blood tests: Blood tests may be ordered to check the levels of substances in the blood that may show a heart problem. Blood tests can also help rule out other conditions that may cause one's symptoms.
7. Cardiac catheterization and biopsy: In this procedure, a thin tube (catheter) is inserted in the groin and threaded through the blood vessels to the heart, where a small sample (biopsy) of the heart, if indicated, can be extracted for laboratory analysis.
Heyde's syndrome is now known to be gastrointestinal bleeding from angiodysplasic lesions due to acquired vWD-2A deficiency secondary to aortic stenosis, and the diagnosis is made by confirming the presence of those three things. Gastrointestinal bleeding may present as bloody vomit, dark, tarry stool from metabolized blood, or fresh blood in the stool. In a person presenting with these symptoms, endoscopy, gastroscopy, and/or colonoscopy should be performed to confirm the presence of angiodysplasia. Aortic stenosis can be diagnosed by auscultation for characteristic heart sounds, particularly a crescendo-decrescendo (i.e., 'ejection') murmur, followed by echocardiography to measure aortic valve area (see diagnosis of aortic stenosis). While Heyde's syndrome may exist alone with no other symptoms of aortic stenosis, the person could also present with evidence of heart failure, fainting, or chest pain. Finally, Heyde's syndrome can be confirmed using blood tests for vWD-2A, although traditional blood tests for von Willebrand factor may result in false negatives due to the subtlety of the abnormality. The gold standard for diagnosis is gel electrophoresis; in people with vWD-2A, the large molecular weight von Willebrand factors will be absent from the SDS-agarose electrophoresis plate.
Blood tests routinely performed include electrolytes (sodium, potassium), measures of kidney function, liver function tests, thyroid function tests, a complete blood count, and often C-reactive protein if infection is suspected. An elevated B-type natriuretic peptide (BNP) is a specific test indicative of heart failure. Additionally, BNP can be used to differentiate between causes of dyspnea due to heart failure from other causes of dyspnea. If myocardial infarction is suspected, various cardiac markers may be used.
According to a meta-analysis comparing BNP and N-terminal pro-BNP (NTproBNP) in the diagnosis of heart failure, BNP is a better indicator for heart failure and left ventricular systolic dysfunction. In groups of symptomatic patients, a diagnostic odds ratio of 27 for BNP compares with a sensitivity of 85% and specificity of 84% in detecting heart failure.
The cause of cardiomegaly is not well understood and many cases of cardiomegaly are idiopathic (having no known cause). Prevention of cardiomegaly starts with detection. If a person has a family history of cardiomegaly, one should let one's doctor know so that treatments can be implemented to help prevent worsening of the condition. In addition, prevention includes avoiding certain lifestyle risk factors such as tobacco use and controlling one's high cholesterol, high blood pressure, and diabetes. Non-lifestyle risk factors include family history of cardiomegaly, coronary artery disease (CAD), congenital heart failure, Atherosclerotic disease, valvular heart disease, exposure to cardiac toxins, sleep disordered breathing (such as sleep apnea), sustained cardiac arrhythmias, abnormal electrocardiograms, and cardiomegaly on chest X-ray. Lifestyle factors which can help prevent cardiomegaly include eating a healthy diet, controlling blood pressure, exercise, medications, and not abusing alcohol and cocaine. Current research and the evidence of previous cases link the following (below) as possible causes of cardiomegaly.
The most common causes of Cardiomegaly are congenital (patients are born with the condition based on a genetic inheritance), high blood pressure which can enlarge the left ventricle causing the heart muscle to weaken over time, and coronary artery disease that creates blockages in the heart's blood supply, which can bring on a cardiac infarction (heart attack) leading to tissue death which causes other areas of the heart to work harder, increasing the heart size.
Other possible causes include:
- Heart Valve Disease
- Cardiomyopathy (disease to the heart muscle)
- Pulmonary Hypertension
- Pericardial Effusion (fluid around the heart)
- Thyroid Disorders
- Hemochromatosis (excessive iron in the blood)
- Other rare diseases like Amyloidosis
- Viral infection of the heart
- Pregnancy, with enlarged heart developing around the time of delivery (peripartum cardiomyopathy)
- Kidney disease requiring dialysis
- Alcohol or cocaine abuse
- HIV infection
- Diabetes
Previously, diagnosis was usually done through autopsy. Advances in imaging technologies allow for early detection and thus ample treatment and monitoring of the affected patient. A short-axis ultrasound of the aortic valve allows for the best view of the aortic valve, and gives a clear indication of the adduction pattern of the aortic valves.
If an “X” shape is seen, then the patient can be diagnosed with having a quadricuspid aortic valve. A transthoracic echocardiogram (TTE) indicates if there is an aortic regurgitation, but a 3-D transesophageal echocardiogram can give a better view of the aortic valve.
Multidetector coronary CT angiography has been indicated as a single competent diagnostic imaging tool capable of delineating valvular anatomy, severity of regurgitation, and high risk coronary problems. The typical method of treatment is through surgery such as aortic valve reconstruction surgery (AVRS) and aortic valve replacement, usually with a synthetic valve.
Prognosis in heart failure can be assessed in multiple ways including clinical prediction rules and cardiopulmonary exercise testing. Clinical prediction rules use a composite of clinical factors such as lab tests and blood pressure to estimate prognosis. Among several clinical prediction rules for prognosticating acute heart failure, the 'EFFECT rule' slightly outperformed other rules in stratifying patients and identifying those at low risk of death during hospitalization or within 30 days. Easy methods for identifying low-risk patients are:
- ADHERE Tree rule indicates that patients with blood urea nitrogen < 43 mg/dl and systolic blood pressure at least 115 mm Hg have less than 10% chance of inpatient death or complications.
- BWH rule indicates that patients with systolic blood pressure over 90 mm Hg, respiratory rate of 30 or fewer breaths per minute, serum sodium over 135 mmol/L, no new ST-T wave changes have less than 10% chance of inpatient death or complications.
A very important method for assessing prognosis in advanced heart failure patients is cardiopulmonary exercise testing (CPX testing). CPX testing is usually required prior to heart transplantation as an indicator of prognosis. Cardiopulmonary exercise testing involves measurement of exhaled oxygen and carbon dioxide during exercise. The peak oxygen consumption (VO2 max) is used as an indicator of prognosis. As a general rule, a VO2 max less than 12–14 cc/kg/min indicates a poor survival and suggests that the patient may be a candidate for a heart transplant. Patients with a VO2 max 35 from the CPX test. The heart failure survival score is a score calculated using a combination of clinical predictors and the VO2 max from the cardiopulmonary exercise test.
Heart failure is associated with significantly reduced physical and mental health, resulting in a markedly decreased quality of life. With the exception of heart failure caused by reversible conditions, the condition usually worsens with time. Although some people survive many years, progressive disease is associated with an overall annual mortality rate of 10%.
Approximately 18 of every 1000 persons will experience an ischemic stroke during the first year after diagnosis of HF. As the duration of follow-up increases, the stroke rate rises to nearly 50 strokes per 1000 cases of HF by 5 years.
The following table includes the main types of valvular stenosis and regurgitation. Major types of valvular heart disease not included in the table include mitral valve prolapse, rheumatic heart disease and endocarditis.
In the diagnosis of tricuspid insufficiency a chest x-ray will demonstrate right heart enlargement. An echocardiogram will assess the chambers of the heart, as well as, right ventricular pressure. Cardiac magnetic resonance may also be used as a diagnostic tool, and finally, cardiac catheterization may determine the extent of the regurgitation.
If untreated, severe symptomatic aortic stenosis carries a poor prognosis with a 2-year mortality rate of 50-60% and a 3-year survival rate of less than 30%. Prognosis after aortic valve replacement for people who are younger than 65 is about five years less than that of the general population; for people older than 65 it is about the same.
Insufficient physical activity (defined as less than 5 x 30 minutes of moderate activity per week, or less than 3 x 20 minutes of vigorous activity per week) is currently the fourth leading risk factor for mortality worldwide. In 2008, 31.3% of adults aged 15 or older (28.2% men and 34.4% women) were insufficiently physically active.
The risk of ischemic heart disease and diabetes mellitus is reduced by almost a third in adults who participate in 150 minutes of moderate physical activity each week (or equivalent). In addition, physical activity assists weight loss and improves blood glucose control, blood pressure, lipid profile and insulin sensitivity. These effects may, at least in part, explain its cardiovascular benefits.
A chest X-ray can also assist in the diagnosis and provide clues as to the severity of the disease, showing the degree of calcification of the valve, and in a chronic condition, an enlarged left ventricle and atrium.
The risk of death in individuals with aortic insufficiency, dilated ventricle, normal ejection fraction who are asymptomatic is about 0.2 percent per year. Risk increases if the ejection fraction decreases or if the individual develops symptoms.
Individuals with chronic (severe) aortic regurgitation follow a course that once symptoms appear, surgical intervention is needed. AI is fatal in 10 to 20% of individuals who do not undergo surgery for this condition. Left ventricle dysfunction determines to an extent the outlook for severity of aortic regurgitation cases.
The echocardiogram is commonly used to confirm the diagnosis of MI. Color doppler flow on the transthoracic echocardiogram (TTE) will reveal a jet of blood flowing from the left ventricle into the left atrium during ventricular systole. Also, it may detect a dilated left atrium and ventricle and decreased left ventricular function.
Because of inability to obtain accurate images of the left atrium and the pulmonary veins with a transthoracic echocardiogram, a transesophageal echocardiogram may be necessary in some cases to determine the severity of MI.
A bicuspid aortic valve can be associated with a heart murmur located at the right second intercostal space. Often there will be differences in blood pressures between upper and lower extremities. The diagnosis can be assisted with echocardiography or magnetic resonance imaging (MRI). Four-dimensional magnetic resonance imaging (4D MRI) is a technique that defines blood flow characteristics and patterns throughout the vessels, across valves, and in compartments of the heart. Four-dimensional imaging enables accurate visualizations of blood flow patterns in a three-dimensional (3D) spatial volume, as well as in a fourth temporal dimension. Current 4D MRI systems produces high-resolution images of blood flow in just a single scan session.
BAV may become calcified later in life, which may lead to varying degrees of severity of aortic stenosis that will manifest as murmurs. If the leaflets do not close correctly, aortic regurgitation can occur. If these become severe enough, they may require heart surgery.The heart is put under more stress in order to either pump more blood through a stenotic valve or attempt to circulate regurgitation blood through a leaking valve.
One of the most notable associations with BAV is the tendency for these patients to present with ascending aortic aneurysmal lesions.
The extracellular matrix of the aorta in patients with BAV shows marked deviations from that of the normal tricuspid aortic valve.
It is currently believed that an increase in the ratio of MMP2 (Matrix Metalloproteinases 2) to TIMP1 (Tissue Inhibitor Metalloproteinases 1) may be responsible for the abnormal degradation of the valve matrix and therefore lead to aortic dissection and aneurysm. However, other studies have also shown MMP9 involvement with no differences in TIMP expression. The size of the proximal aorta should be evaluated carefully during the workup. The initial diameter of the aorta should be noted and annual evaluation with CT scan, or MRI to avoid ionizing radiation, should be recommended to the patient; the examination should be conducted more frequently if a change in aortic diameter is seen. From this monitoring, the type of surgery that should be offered to the patient can be determined based on the change in size of the aorta.
Coarctation of the aorta (a congenital narrowing in the region of the ductus arteriosus) has also been associated with BAV.
The hemodynamic sequelae of AI are dependent on the rate of onset of AI. Therefore, can be acute or chronic as follows:
- Acute aortic insufficiency In acute AI, as may be seen with acute perforation of the aortic valve due to endocarditis, there will be a sudden increase in the volume of blood in the left ventricle. The ventricle is unable to deal with the sudden change in volume. The filling pressure of the left ventricle will increase. This causes pressure in the left atrium to rise, and the individual will develop pulmonary edema. Severe acute aortic insufficiency is considered a medical emergency. There is a high mortality rate if the individual does not undergo immediate surgery for aortic valve replacement.
- Chronic aortic insufficiency If the individual survives the initial hemodynamic derailment that acute AI presents as, the left ventricle adapts by eccentric hypertrophy and dilatation of the left ventricle, and the volume overload is compensated for. The left ventricular filling pressures will revert to normal and the individual will no longer have overt heart failure. In this compensated phase, the individual may be totally asymptomatic and may have normal exercise tolerance. Eventually (typically after a latency period) the left ventricle will become decompensated, and filling pressures will increase.Some individuals enter this decompensated phase asymptomatically, treatment for AI involves aortic valve replacement prior to this decompensation phase.
The chest X-ray in individuals with chronic MI is characterized by enlargement of the left atrium and the left ventricle. The pulmonary vascular markings are typically normal, since pulmonary venous pressures are usually not significantly elevated.
In terms of treatment for tricuspid insufficiency prosthetic valve substitutes can be used, though artificial prostheses may cause thrombo‐embolic phenomena(bioprostheses may have a degeneration problem). Some evidence suggests that there are no significant differences between a mechanical or biological tricuspid valve in a recipient.
Generally, surgical treatment of tricuspid regurgitation is not indicated when it has arisen as a result of right ventricular dilatation. In such instances of secondary tricuspid regurgitation, the mainstay of therapy is medical. When left-sided heart failure is the cause, the individual is instructed to decrease intake of salt. Medications in this case may include diuretics and angiotensin-converting enzyme inhibitors.
Another method of measuring the severity of mitral stenosis is the simultaneous left and right heart chamber catheterization. The right heart catheterization (commonly known as Swan-Ganz catheterization) gives the physician the mean pulmonary capillary wedge pressure, which is a reflection of the left atrial pressure. The left heart catheterization, on the other hand, gives the pressure in the left ventricle. By simultaneously taking these pressures, it is possible to determine the gradient between the left atrium and left ventricle during ventricular diastole, which is a marker for the severity of mitral stenosis. This method of evaluating mitral stenosis tends to overestimate the degree of mitral stenosis, however, because of the time lag in the pressure tracings seen on the right-heart catheterization and the slow Y descent seen on the wedge tracings. If a trans-septal puncture is made during right heart catheterization, however, the pressure gradient can accurately quantify the severity of mitral stenosis.
In terms of treatment for pulmonary valve stenosis, valve replacement or surgical repair (depending upon whether the stenosis is in the valve or vessel) may be indicated. If the valve stenosis is of congenital origin, balloon valvuloplasty is another option, depending on the case.
Valves made from animal or human tissue (are used for valve replacement), in adults metal valves can be used.