Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
PCR-based screening methodologies are in the process of development. Although they speed up detection immensely, they are costly and the reliability of the tests is questionable due to false positives. Nested arbitrary PCR (ARB-PCR) was used during a 2007 CRE outbreak at the University of Virginia Medical Center to identify the specific "bla" KPC plasmid involved in the transmission of the infection, and researchers suggest that ARB-PCR may also be used to identify other methods of CRE spread.
The disc diffusion method can be used by hospital laboratories to screen for CRE. In this technique, antibiotic discs are placed onto plates of Mueller Hinton agar that have already been inoculated with the sample strain. The plates are then incubated overnight at 37 °C. Following incubation, the zones of inhibition surrounding the various antibiotic discs are measured and compared with Clinical and Laboratory Standard Institute guidelines. Identification of KPCs, MBLs and OXAs can be achieved by demonstrating synergistic inhibition with phenyl boronic acid, EDTA or neither, respectively.
In a Thailand-based study of CRE in hospital settings, carbapenem resistance was defined as any strain that shows resistance to at least one of three carbapenem antibiotics tested.
Screening for VRE can be accomplished in a number of ways. For inoculating peri-rectal/anal swabs or stool specimens directly, one method uses bile esculin azide agar plates containing 6 µg/ml of vancomycin. Black colonies should be identified as an enterococcus to species level and further confirmed as vancomycin resistant by an MIC method before reporting as VRE.
Vancomycin resistance can be determined for enterococcal colonies available in pure culture by inoculating a suspension of the organism onto a commercially available brain heart infusion agar (BHIA) plate containing 6 µg/ml vancomycin. The National Committee for Clinical Laboratory Standards (NCCLS) recommends performing a vancomycin MIC test and also motility and pigment production tests to distinguish species with acquired resistance (vanA and vanB) from those with vanC intrinsic resistance.
There are multiple national and international monitoring programs for drug-resistant threats, including methicillin-resistant "Staphylococcus aureus" (MRSA), vancomycin-resistant "S. aureus" (VRSA), extended spectrum beta-lactamase (ESBL), vancomycin-resistant "Enterococcus" (VRE), multidrug-resistant "A. baumannii" (MRAB).
ResistanceOpen is an online global map of antimicrobial resistance developed by HealthMap which displays aggregated data on antimicrobial resistance from publicly available and user submitted data. The website can display data for a 25-mile radius from a location. Users may submit data from antibiograms for individual hospitals or laboratories. European data is from the EARS-Net (European Antimicrobial Resistance Surveillance Network), part of the ECDC.
ResistanceMap is a website by the Center for Disease Dynamics, Economics & Policy and provides data on antimicrobial resistance on a global level.
Antibiotic treatment duration should be based on the infection and other health problems a person may have. For many infections once a person has improved there is little evidence that stopping treatment causes more resistance. Some therefore feel that stopping early may be reasonable in some cases. Other infections, however, do require long courses regardless of whether a person feels better.
For isolates with a Vancomycin MIC , an alternative to Vancomycin should be used. The approach is to treat with at least one agent to which VISA/VRSA is known to be susceptible by "in vitro" testing. The agents that are used include daptomycin, linezolid, telavancin, ceftaroline, quinupristin–dalfopristin. For people with MRSA bacteremia in the setting of vancomycin failure the IDSA recommends high-dose daptomycin, if the isolate is susceptible, in combination with another agent (e.g. gentamicin, rifampin, linezolid, TMP-SMX, or a beta-lactam antibiotic).
The diagnosis of vancomycin-resistant Staphylococcus aureus can be done with disk diffusion(and VA screen plate)
Successful diagnosis of XDR-TB depends on the patient’s access to quality health-care services. If TB bacteria are found in the sputum, the diagnosis of TB can be made in a day or two, but this finding will not be able to distinguish between drug-susceptible and drug-resistant TB. To evaluate drug susceptibility, the bacteria need to be cultivated and tested in a suitable laboratory. Final diagnosis in this way for TB, and especially for XDR-TB, may take from 6 to 16 weeks. To reduce the time needed for diagnosis, new tools for rapid TB diagnosis are urgently needed.
The original method used to test for MDR-TB and XDR-TB was the Drug Susceptibility Testing (DST). DST is capable of determining how well four primary antitubercular drugs inhibit the growth of Mycobacterium Tuberculosis. The four primary antitubercular drugs are Isoniazid, Rifampin, Ethambutol and Pyrazinamide. Drug Susceptibility testing is done by making a Lowenstein-Jensen medium plate and spreading the bacteria on the plate. Disks containing one of the four primary drugs are added to the plate. After weeks of allowing the bacteria to grow the plate is checked for clear areas around the disk. If there is a clear area, the drug has killed the bacteria and most likely the bacteria is not resistant to that drug.
As "Mycobacterium tuberculosis" evolved new strains of resistant bacteria were being found such as XDR-TB. The problem was that primary DST was not suitable for testing bacteria strains that were extensively drug resistant. This problem was starting to be fixed when drug susceptibility tests started including not just the four primary drugs, but secondary drugs. This secondary test is known as Bactec MGIT 960 System. Although Bactec MGIT 960 System was accurate it was still slow at determining the level of resistance.
Diagnosis of MDR and XDR-TB in children is challenging. With an increasing number of cases being reported worldwide there is a great need for better diagnostic tools available for pediatric patients.
In recent years drug resistant tuberculosis testing has shown a lot of progress. Some studies have found an in-house assay that could rapidly detect resistance to drugs involved in the definition of XDR-TB directly from smear-positive specimens. The assay is called Reverse Line Blot Hybridization Assay also known as RLBH. The study showed that the results of RLBH were as accurate as other drug susceptibility tests, but at the same time didn`t take weeks to get results. RLBH testing only took 3 days to determine how resistant the strain of bacteria was.
The current research has shown progress in the testing of drug resistance. A recent study found that a research technique known as direct nitrate reductase assay (D-NRA) showed efficient accuracy for the rapid and simultaneous detection of resistance to isoniazid (INH), rifampicin (RIF), kanamycin (KAN) and ofloxacin (OFL). D-NRA results were obtained in 16.9 days, comparably less than other drug susceptibility testing. At the same time the study mentioned how D-NRA is a low-cost technology, easy to set up in clinical laboratories and suitable to be used for DST of M. tuberculosis in all smear-positive samples.
Cephalosporin use is a risk factor for colonization and infection by VRE, and restriction of cephalosporin usage has been associated with decreased VRE infection and transmission in hospitals. "Lactobacillus rhamnosus" GG (LGG), a strain of "L. rhamnosus", was used successfully for the first time to treat gastrointestinal carriage of VRE. In the US, linezolid is commonly used to treat VRE.
"Biological cost" or "metabolic price" is a measure of the increased energy metabolism required to achieve a function.
Drug resistance has a high metabolic price in pathogens for which this concept is relevant (bacteria, endoparasites, and tumor cells.) In viruses, an equivalent "cost" is genomic complexity.
Due to the importance of disease caused by "S. pneumoniae" several vaccines have been developed to protect against invasive infection. The World Health Organization recommend routine childhood pneumococcal vaccination; it is incorporated into the childhood immunization schedule in a number of countries including the United Kingdom, United States, and South Africa.
To limit the development of antimicrobial resistance, it has been suggested to:
- Use the appropriate antimicrobial for an infection; e.g. no antibiotics for viral infections
- Identify the causative organism whenever possible
- Select an antimicrobial which targets the specific organism, rather than relying on a broad-spectrum antimicrobial
- Complete an appropriate duration of antimicrobial treatment (not too short and not too long)
- Use the correct dose for eradication; subtherapeutic dosing is associated with resistance, as demonstrated in food animals.
The medical community relies on education of its prescribers, and self-regulation in the form of appeals to voluntary antimicrobial stewardship, which at hospitals may take the form of an antimicrobial stewardship program. It has been argued that depending on the cultural context government can aid in educating the public on the importance of restrictive use of antibiotics for human clinical use, but unlike narcotics, there is no regulation of its use anywhere in the world at this time. Antibiotic use has been restricted or regulated for treating animals raised for human consumption with success, in Denmark for example.
Infection prevention is the most efficient strategy of prevention of an infection with a MDR organism within a hospital, because there are few alternatives to antibiotics in the case of an extensively resistant or panresistant infection; if an infection is localized, removal or excision can be attempted (with MDR-TB the lung for example), but in the case of a systemic infection only generic measures like boosting the immune system with immunoglobulins may be possible. The use of bacteriophages (viruses which kill bacteria) has no clinical application at the present time.
It is necessary to develop new antibiotics over time since the selection of resistant bacteria cannot be prevented completely. This means with every application of a specific antibiotic, the survival of a few bacteria which already got a resistance gene against the substance is promoted, and the concerning bacterial population amplifies. Therefore, the resistance gene is farther distributed in the organism and the environment, and a higher percentage of bacteria does no longer respond to a therapy with this specific antibiotic.
The chances of drug resistance can sometimes be minimized by using multiple drugs simultaneously. This works because individual mutations can be independent and may tackle only one drug at a time; if the individuals are still killed by the other drugs, then the mutations cannot persist. This was used successfully in tuberculosis. However, cross resistance where mutations confer resistance to two or more treatments can be problematic.
For antibiotic resistance, which represents a widespread problem nowadays, drugs designed to block the mechanisms of bacterial antibiotic resistance are used. For example, bacterial resistance against beta-lactam antibiotics (such as penicillins and cephalosporins) can be circumvented by using antibiotics such as nafcillin that are not susceptible to destruction by certain beta-lactamases (the group of enzymes responsible for breaking down beta-lactams). Beta-lactam bacterial resistance can also be dealt with by administering beta-lactam antibiotics with drugs that block beta-lactamases such as clavulanic acid so that the antibiotics can work without getting destroyed by the bacteria first. Recently, researchers have recognized the need for new drugs that inhibit bacterial efflux pumps, which cause resistance to multiple antibiotics such as beta-lactams, quinolones, chloramphenicol, and trimethoprim by sending molecules of those antibiotics out of the bacterial cell. Sometimes a combination of different classes of antibiotics may be used synergistically; that is, they work together to effectively fight bacteria that may be resistant to one of the antibiotics alone.
Destruction of the resistant bacteria can also be achieved by phage therapy, in which a specific bacteriophage (virus that kills bacteria) is used.
There is research being done using antimicrobial peptides. In the future, there is a possibility that they might replace novel antibiotics.
The prime example for MDR against antiparasitic drugs is malaria. "Plasmodium vivax" has become chloroquine and sulfadoxine-pyrimethamine resistant a few decades ago, and as of 2012 artemisinin-resistant Plasmodium falciparum has emerged in western Cambodia and western Thailand.
"Toxoplasma gondii" can also become resistant to artemisinin, as well as atovaquone and sulfadiazine, but is not usually MDR
Antihelminthic resistance is mainly reported in the veterinary literature, for example in connection with the practice of livestock drenching and has been recent focus of FDA regulation.
Depending on the nature of infection an appropriate sample is collected for laboratory identification. Pneumococci are typically gram-positive cocci seen in pairs or chains. When cultured on blood agar plates with added optochin antibiotic disk they show alpha-hemolytic colonies and a clear zone of inhibition around the disk indicating sensitivity to the antibiotic. Pneumococci are also bile soluble. Just like other streptococci they are catalase-negative. A Quellung test can identify specific capsular polysaccharides.
Pneumococcal antigen (cell wall C polysaccharide) may be detected in various body fluids. Older detection kits, based on latex agglutination, added little value above Gram staining and were occasionally false-positive. Better results are achieved with rapid immunochromatography, which has a sensitivity (identifies the cause) of 70–80% and >90% specificity (when positive identifies the actual cause) in pneumococcal infections. The test was initially validated on urine samples but has been applied successfully to other body fluids. Chest X-rays can also be conducted to confirm inflammation though are not specific to the causative agent.
Common situations in which antibiotics are overused include the following:
- Apparent viral respiratory illness in children should not be treated with antibiotics. If there is a diagnosis of bacterial infection, then antibiotics may be used.
- When children with ear tubes get ear infections, they should have antibiotic eardrops put into their ears to go to the infection rather than having oral antibiotics which are more likely to have unwanted side effects.
- Swimmer's ear should be treated with antibiotic eardrops, not oral antibiotics.
- Sinusitis should not be treated with antibiotics because it is usually caused by a virus, and even when it is caused by a bacteria, antibiotics are not indicated except in atypical circumstances as it usually resolves without treatment.
- Viral conjunctivitis should not be treated with antibiotics. Antibiotics should only be used with confirmation that a patient has bacterial conjunctivitis.
- Older persons often have bacteria in their urine which is detected in routine urine tests, but unless the person has the symptoms of a urinary tract infection, antibiotics should not be used in response.
- Eczema should not be treated with oral antibiotics. Dry skin can be treated with lotions or other symptom treatments.
- The use of topical antibiotics to treat surgical wounds does not reduce infection rates in comparison with non-antibiotic ointment or no ointment at all.
Countries aim to prevent XDR-TB by ensuring that the work of their national TB control programmes, and of all practitioners working with people with TB, is carried out according to the International Standards for TB Care. These emphasize providing proper diagnosis and treatment to all TB patients, including those with drug-resistant TB; assuring regular, timely supplies of all anti-TB drugs; proper management of anti-TB drugs and providing support to patients to maximize adherence to prescribed regimens; caring for XDR-TB cases in a centre with proper ventilation, and minimizing contact with other patients, particularly those with HIV, especially in the early stages before treatment has had a chance to reduce the infectiousness. Also an effective disease control infrastructure is necessary for the prevention of XDR tuberculosis. Increased funding for research, and strengthened laboratory facilities are much required. Immediate detection through drug susceptibility testing's are vital, when trying to stop the spread of XDR tuberculosis.
Antibiotics have no effect on viral infections such as the common cold. They are also ineffective against sore throats, which are usually viral and self-resolving. Most cases of bronchitis (90–95%) are viral as well, passing after a few weeks—the use of antibiotics against bronchitis is superfluous and can put the patient at risk of suffering adverse reactions.
Official guidelines by the American Heart Association for dental antibiotic prophylaxis call for the administration of antibiotics to prevent infective endocarditis. Though the current (2007) guidelines dictate more restricted antibiotic use, many dentists and dental patients follow the 1997 guidelines instead, leading to overuse of antibiotics.
A study by Imperial College London in February 2017 found that of 20 online websites, 9 would provide antibiotics (illegally) without a prescription to UK residents.
There are several ways that drug resistance to TB, and drug resistance in general, can be prevented:
1. Rapid diagnosis & treatment of TB: One of the greatest risk factors for drug resistant TB is problems in treatment and diagnosis, especially in developing countries. If TB is identified and treated soon, drug resistance can be avoided.
2. Completion of treatment: Previous treatment of TB is an indicator of MDR TB. If the patient does not complete his/her antibiotic treatment, or if the physician does not prescribe the proper antibiotic regimen, resistance can develop. Also, drugs that are of poor quality or less in quantity, especially in developing countries, contribute to MDR TB.
3. Patients with HIV/AIDS should be identified and diagnosed as soon as possible. They lack the immunity to fight the TB infection and are at great risk of developing drug resistance.
4. Identify contacts who could have contracted TB: i.e. family members, people in close contact, etc.
5. Research: Much research and funding is needed in the diagnosis, prevention and treatment of TB and MDR TB.
"Opponents of a universal tuberculosis treatment, reasoning from misguided notions of cost-effectiveness, fail to acknowledge that MDRTB is not a disease of poor people in distant places. The disease is infectious and airborne. Treating only one group of patients looks inexpensive in the short run, but will prove disastrous for all in the long run."- Paul Farmer
The Gonorrhea bacterium Neisseria gonorrhoeae has developed antibiotic resistance to many antibiotics.
The bacteria was first identified in 1879, although some Biblical scholars believe that references to the disease can be found as early as Parshat Metzora of the Old Testament.
In the 1940s effective treatment with penicillin became available, but by the 1970s resistant strains predominated. Resistance to penicillin has developed through two mechanisms: chromasomally mediated resistance (CMRNG) and penicillinase-mediated resistance (PPNG). CMRNG involves step wise mutation of penA, which codes for the penicillin-binding protein (PBP-2); mtr, which encodes an efflux pump that removes penicillin from the cell; and penB, which encodes the bacterial cell wall porins. PPNG involves the acquisition of a plasmid-borne beta-lactamase. "N. gonorrheoea" has a high affinity for horizontal gene transfer, and as a result, the existence of any strain resistant to a given drug could spread easily across strains.
Fluoroquinolones were a useful next-line treatment until resistance was achieved through efflux pumps and mutations to the gyrA gene, which encodes DNA gyrase. Third-generation cephalosporins have been used to treat gonorrhoea since 2007, but resistant strains have emerged. As of 2010, the recommended treatment is a single 250 mg intramuscular injection of ceftriaxone, sometimes in combination with azithromycin or doxycycline. However, certain strains of "N. gonorrhoeae" can be resistant to antibiotics usually that are normally used to treat it. These include: cefixime (an oral cephalosporin), ceftriaxone (an injectable cephalosporin), azithromycin, aminoglycosides, and tetracycline.
Usually, multidrug-resistant tuberculosis can be cured with long treatments of second-line drugs, but these are more expensive than first-line drugs and have more adverse effects. The treatment and prognosis of MDR-TB are much more akin to those for cancer than to those for infection. MDR-TB has a mortality rate of up to 80%, which depends on a number of factors, including
1. How many drugs the organism is resistant to (the fewer the better)
2. How many drugs the patient is given (patients treated with five or more drugs do better)
3. Whether an injectable drug is given or not (it should be given for the first three months at least)
4. The expertise and experience of the physician responsible
5. How co-operative the patient is with treatment (treatment is arduous and long, and requires persistence and determination on the part of the patient)
6. Whether the patient is HIV positive or not (HIV co-infection is associated with an increased mortality).
The majority of patients suffering from multi-drug-resistant tuberculosis do not receive treatment, as they are found in underdeveloped countries or in poverty. Denial of treatment remains a difficult human rights issue, as the high cost of second-line medications often precludes those who cannot afford therapy.
A study of cost-effective strategies for tuberculosis control supported three major policies. First, the treatment of smear-positive cases in DOTS programs must be the foundation of any tuberculosis control approach, and should be a basic practice for all control programs. Second, there is a powerful economic case for treating smear-negative and extra-pulmonary cases in DOTS programs along with treating smear-negative and extra-pulmonary cases in DOTS programs as a new WHO “STOP TB” approach and the second global plan for tuberculosis control. Last, but not least, the study shows that significant scaling up of all interventions is needed in the next 10 years if the millennium development goal and related goals for tuberculosis control are to be achieved. If the case detection rate can be improved, this will guarantee that people who gain access to treatment facilities are covered and that coverage is widely distributed to people who do not now have access.
In general, treatment courses are measured in months to years; MDR-TB may require surgery, and death rates remain high despite optimal treatment. However, good outcomes for patients are still possible.
The treatment of MDR-TB must be undertaken by physicians experienced in the treatment of MDR-TB. Mortality and morbidity in patients treated in non-specialist centers are significantly higher to those of patients treated in specialist centers. Treatment of MDR-TB must be done on the basis of sensitivity testing: it is impossible to treat such patients without this information. When treating a patient with suspected MDR-TB, pending the result of laboratory sensitivity testing, the patient could be started on SHREZ (Streptomycin+ isonicotinyl Hydrazine+ Rifampicin+Ethambutol+ pyraZinamide) and moxifloxacin with cycloserine. There is evidence that previous therapy with a drug for more than a month is associated with diminished efficacy of that drug regardless of "in vitro" tests indicating susceptibility. Hence, a detailed knowledge of the treatment history of each patient is essential. In addition to the obvious risks (i.e., known exposure to a patient with MDR-TB), risk factors for MDR-TB include HIV infection, previous incarceration, failed TB treatment, failure to respond to standard TB treatment, and relapse following standard TB treatment.
A gene probe for "rpoB" is available in some countries. This serves as a useful marker for MDR-TB, because isolated RMP resistance is rare (except when patients have a history of being treated with rifampicin alone). If the results of a gene probe ("rpoB") are known to be positive, then it is reasonable to omit RMP and to use SHEZ+MXF+cycloserine. The reason for maintaining the patient on INH is that INH is so potent in treating TB that it is foolish to omit it until there is microbiological proof that it is ineffective (even though isoniazid resistance so commonly occurs with rifampicin resistance).
When sensitivities are known and the isolate is confirmed as resistant to both INH and RMP, five drugs should be chosen in the following order (based on known sensitivities):
- an aminoglycoside (e.g., amikacin, kanamycin) or polypeptide antibiotic (e.g., capreomycin)
- pyrazinamide
- ethambutol
- a fluoroquinolone (e.g., moxifloxacin (ciprofloxacin) should no longer be used);
- rifabutin
- cycloserine
- a thioamide: prothionamide or ethionamide
- PAS
- a macrolide: e.g., clarithromycin
- linezolid
- high-dose INH (if low-level resistance)
- interferon-γ
- thioridazine
- Ampicillin
"Note:" Drugs placed nearer the top of the list are more effective and less toxic; drugs placed nearer the bottom of the list are less effective or more toxic, or more difficult to obtain.
In general, resistance to one drug within a class means resistance to all drugs within that class, but a notable exception is rifabutin: Rifampicin-resistance does not always mean rifabutin-resistance, and the laboratory should be asked to test for it. It is possible to use only one drug within each drug class. If it is difficult finding five drugs to treat then the clinician can request that high-level INH-resistance be looked for. If the strain has only low-level INH-resistance (resistance at 0.2 mg/l INH, but sensitive at 1.0 mg/l INH), then high dose INH can be used as part of the regimen. When counting drugs, PZA and interferon count as zero; that is to say, when adding PZA to a four-drug regimen, another drug must be chosen to make five. It is not possible to use more than one injectable (STM, capreomycin or amikacin), because the toxic effect of these drugs is additive: If possible, the aminoglycoside should be given daily for a minimum of three months (and perhaps thrice weekly thereafter). Ciprofloxacin should not be used in the treatment of tuberculosis if other fluoroquinolones are available.
There is no intermittent regimen validated for use in MDR-TB, but clinical experience is that giving injectable drugs for five days a week (because there is no-one available to give the drug at weekends) does not seem to result in inferior results. Directly observed therapy helps to improve outcomes in MDR-TB and should be considered an integral part of the treatment of MDR-TB.
Response to treatment must be obtained by repeated sputum cultures (monthly if possible). Treatment for MDR-TB must be given for a minimum of 18 months and cannot be stopped until the patient has been culture-negative for a minimum of nine months. It is not unusual for patients with MDR-TB to be on treatment for two years or more.
Patients with MDR-TB should be isolated in negative-pressure rooms, if possible. Patients with MDR-TB should not be accommodated on the same ward as immunosuppressed patients (HIV-infected patients, or patients on immunosuppressive drugs). Careful monitoring of compliance with treatment is crucial to the management of MDR-TB (and some physicians insist on hospitalisation if only for this reason). Some physicians will insist that these patients remain isolated until their sputum is smear-negative, or even culture-negative (which may take many months, or even years). Keeping these patients in hospital for weeks (or months) on end may be a practical or physical impossibility, and the final decision depends on the clinical judgement of the physician treating that patient. The attending physician should make full use of therapeutic drug monitoring (in particular, of the aminoglycosides) both to monitor compliance and to avoid toxic effects.
Some supplements may be useful as adjuncts in the treatment of tuberculosis, but, for the purposes of counting drugs for MDR-TB, they count as zero (if four drugs are already in the regimen, it may be beneficial to add arginine or vitamin D or both, but another drug will be needed to make five).
- arginine (peanuts are a good source)
- vitamin D
- Dzherelo
- V5 Immunitor
The drugs listed below have been used in desperation, and it is uncertain as to whether they are effective at all. They are used when it is not possible to find five drugs from the list above.
- imipenem
- co-amoxiclav
- clofazimine
- prochlorperazine
- metronidazole
On December 28, 2012 the U.S. Food and Drug Administration (FDA) approved bedaquiline (marketed as Sirturo by Johnson & Johnson) to treat multi-drug resistant tuberculosis, the first new treatment in 40 years. Sirturo is to be used in a combination therapy for patients who have failed standard treatment and have no other options. Sirturo is an adenosine triphosphate synthase (ATP synthase) inhibitor.
The following drugs are experimental compounds that are not commercially available, but may be obtained from the manufacturer as part of a clinical trial or on a compassionate basis. Their efficacy and safety are unknown:
- pretomanid (manufactured by Novartis, developed in partnership with TB Alliance)
- delamanid
In cases of extremely resistant disease, surgery to remove infection portions of the lung is, in general, the final option. The center with the largest experience in this is the National Jewish Medical and Research Center in Denver, Colorado. In 17 years of experience, they have performed 180 operations; of these, 98 were lobectomies and 82 were pneumonectomies. There is a 3.3% operative mortality, with an additional 6.8% dying following the operation; 12% experienced significant morbidity (in particular, extreme breathlessness). Of 91 patients who were culture-positive before surgery, only 4 were culture-positive after surgery.
The resurgence of tuberculosis in the United States, the advent of HIV-related tuberculosis, and the development of strains of TB resistant to the first-line therapies developed in recent decades—serve to reinforce the thesis that Mycobacterium tuberculosis, the causative organism, makes its own preferential option for the poor. The simple truth is that almost all tuberculosis deaths result from a lack of access to existing effective therapy.
Isolation is the implementation of isolating precautions designed to prevent transmission of microorganisms by common routes in hospitals. (See Universal precautions and Transmission-based precautions.) Because agent and host factors are more difficult to control, interruption of transfer of microorganisms is directed primarily at transmission for example isolation of infectious cases in special hospitals and isolation of patient with infected wounds in special rooms also isolation of joint transplantation patients on specific rooms.
The methods used differ from country to country (definitions used, type of nosocomial infections covered, health units surveyed, inclusion or exclusion of imported infections, etc.), so the international comparisons of nosocomial infection rates should be made with the utmost care.
Recovery from an anaerobic infection depends on adequate and rapid management. The main principles of managing anaerobic infections are neutralizing the toxins produced by anaerobic bacteria, preventing the local proliferation of these organisms by altering the environment and preventing their dissemination and spread to healthy tissues.
Toxin can be neutralized by specific antitoxins, mainly in infections caused by Clostridia (tetanus and botulism). Controlling the environment can be attained by draining the pus, surgical debriding of necrotic tissue, improving blood circulation, alleviating any obstruction and by improving tissue oxygenation. Therapy with hyperbaric oxygen (HBO) may also be useful. The main goal of antimicrobials is in restricting the local and systemic spread of the microorganisms.
The available parenteral antimicrobials for most infections are metronidazole, clindamycin, chloramphenicol, cefoxitin, a penicillin (i.e. ticarcillin, ampicillin, piperacillin) and a beta-lactamase inhibitor (i.e. clavulanic acid, sulbactam, tazobactam), and a carbapenem (imipenem, meropenem, doripenem, ertapenem). An antimicrobial effective against Gram-negative enteric bacilli (i.e. aminoglycoside) or an anti-pseudomonal cephalosporin (i.e. cefepime ) are generally added to metronidazole, and occasionally cefoxitin when treating intra-abdominal infections to provide coverage for these organisms. Clindamycin should not be used as a single agent as empiric therapy for abdominal infections. Penicillin can be added to metronidazole in treating of intracranial, pulmonary and dental infections to provide coverage against microaerophilic streptococci, and Actinomyces.
Oral agents adequate for polymicrobial oral infections include the combinations of amoxicillin plus clavulanate, clindamycin and metronidazole plus a macrolide. Penicillin can be added to metronidazole in the treating dental and intracranial infections to cover "Actinomyces" spp., microaerophilic streptococci, and "Arachnia" spp. A macrolide can be added to metronidazole in treating upper respiratory infections to cover "S. aureus" and aerobic streptococci. Penicillin can be added to clindamycin to supplement its coverage against "Peptostreptococcus" spp. and other Gram-positive anaerobic organisms.
Doxycycline is added to most regimens in the treatment of pelvic infections to cover chlamydia and mycoplasma. Penicillin is effective for bacteremia caused by non-beta lactamase producing bacteria. However, other agents should be used for the therapy of bacteremia caused by beta-lactamase producing bacteria.
Because the length of therapy for anaerobic infections is generally longer than for infections due to aerobic and facultative anaerobic bacteria, oral therapy is often substituted for parenteral treatment. The agents available for oral therapy are limited and include amoxacillin plus clavulanate, clindamycin, chloramphenicol and metronidazole.
In 2010 the American Surgical Society and American Society of Infectious Diseases have updated their guidelines for the treatment of abdominal infections.
The recommendations suggest the following:
For mild-to-moderate community-acquired infections in adults, the agents recommended for empiric regimens are: ticarcillin- clavulanate, cefoxitin, ertapenem, moxifloxacin, or tigecycline as single-agent therapy or combinations of metronidazole with cefazolin, cefuroxime, ceftriaxone, cefotaxime, levofloxacin, or ciprofloxacin. Agents no longer recommended are: cefotetan and clindamycin ( Bacteroides fragilis group resistance) and ampicillin-sulbactam (E. coli resistance) and ainoglycosides (toxicity).
For high risk community-acquired infections in adults, the agents recommended for empiric regimens are: meropenem, imipenem-cilastatin, doripenem, piperacillin-tazobactam, ciprofloxacin or levofloxacin in combination with metronidazole, or ceftazidime or cefepime in combination with metronidazole. Quinolones should not be used unless hospital surveys indicate >90% susceptibility of "E. coli" to quinolones.
Aztreonam plus metronidazole is an alternative, but addition of an agent effective against gram-positive cocci is recommended. The routine use of an aminoglycoside or another second agent effective against gram-negative facultative and aerobic bacilli is not recommended in the absence of evidence that the infection is caused by resistant organisms that require such therapy.
Empiric use of agents effective against enterococci is recommended and agents effective against methicillin-resistant "S. aureus" (MRSA) or yeast is not recommended in the absence of evidence of infection due to such organisms.
Empiric antibiotic therapy for health care-associated intra-abdominal should be driven by local microbiologic results. Empiric coverage of likely pathogens may require multidrug regimens that include agents with expanded spectra of activity against gram-negative aerobic and facultative bacilli. These include meropenem, imipenem-cilastatin, doripenem, piperacillin-tazobactam, or ceftazidime or cefepime in combination with metronidazole. Aminoglycosides or colistin may be required.
Antimicrobial regimens for children include an aminoglycoside-based regimen, a carbapenem (imipenem, meropenem, or ertapenem), a beta-lactam/beta-lactamase-inhibitor combination (piperacillin-tazobactam or ticarcillin-clavulanate), or an advanced-generation cephalosporin (cefotaxime, ceftriaxone, ceftazidime, or cefepime) with metronidazole.
Clinical judgment, personal experience, safety and patient compliance should direct the physician in the choice of the appropriate antimicrobial agents. The length of therapy generally ranges between 2 and 4 weeks, but should be individualized depending on the response. In some instances treatment may be required for as long as 6–8 weeks, but can often be shortened with proper surgical drainage.
In hospitalised patients who develop respiratory symptoms and fever, one should consider the diagnosis. The likelihood increases when upon investigation symptoms are found of respiratory insufficiency, purulent secretions, newly developed infiltrate on the chest X-Ray, and increasing leucocyte count. If pneumonia is suspected material from sputum or tracheal aspirates are sent to the microbiology department for cultures. In case of pleural effusion thoracentesis is performed for examination of pleural fluid. In suspected ventilator-associated pneumonia it has been suggested that bronchoscopy(BAL) is necessary because of the known risks surrounding clinical diagnoses.