Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A healthcare provider can usually diagnose a port-wine stain based entirely upon the history and appearance. In unusual cases, a skin biopsy may be needed to confirm the diagnosis. Depending on the location of the birthmark and other associated symptoms, a physician may choose to order a measurement of intraocular pressure or X-ray of the skull.
A MRI scan of the brain may be performed (under anesthesia) on infants who have a port-wine stain in the head area in order to check for signs of Sturge-Weber syndrome.
If the port-wine stain is inside the mouth, a provider may check the insides of a newborn baby's throat with a scope to see if there are any changes (growths) other than just the color.
If the port-wine stain is around the eye or on the eyelid, a referral may be made to an optometrist or ophthalmologist for a test of the ocular pressures in that eye. If swelling occurs in the port-wine stain, it may cause vision problems, glaucoma, or blindness.
Oral propranolol appears to be the most effective treatment for reducing the size of capillary hemangiomas in children and is more effective than placebo, observation without intervention, or oral corticosteroids.
In the absence of successful treatment, hypertrophy (increased tissue mass) of the stains may cause problems later in life, such as loss of function (especially if the stain is near the eye or mouth), bleeding, and increasing disfigurement. Lesions on or near the eyelid can be associated with glaucoma. If the port-wine stain is on the face or other highly visible part of the body, its presence can also cause emotional and social problems for the affected person.
It is suggested that gene therapy might be used as a cure in the future.
Diagnosis is generally made by magnetic resonance imaging (MRI), particularly using a specific imaging technique known as a gradient-echo sequence MRI, which can unmask small or punctate lesions that may otherwise remain undetected. These lesions are also more conspicuous on FLAIR imaging compared to standard T2 weighing. FLAIR imaging is different from gradient sequences. Rather, it is similar to T2 weighing but suppresses free-flowing fluid signal. Sometimes quiescent CCMs can be revealed as incidental findings during MRI exams ordered for other reasons. Many cavernous hemangiomas are detected "accidentally" during MRIs searching for other pathologies. These "incidentalomas" are generally asymptomatic. In the case of hemorrhage, however, a CT scan is more efficient at showing new blood than an MRI, and when brain hemorrhage is suspected, a CT scan may be ordered first, followed by an MRI to confirm the type of lesion that has bled.
Sometimes the lesion appearance imaged by MRI remains inconclusive. Consequently neurosurgeons will order a cerebral angiogram or magnetic resonance angiogram (MRA). Since CCMs are low flow lesions (they are hooked into the venous side of the circulatory system), they will be angiographically occult (invisible). If a lesion is discernible via angiogram in the same location as in the MRI, then an arteriovenous malformation (AVM) becomes the primary concern.
In most patients, the number and size of cherry angiomas increases with advancing age. They are harmless, having no relation to cancer at all.
Spider angiomas are asymptomatic and usually resolve spontaneously. This is common in the case of children, although they may take several years to disappear. If the spider angiomas are associated with pregnancy, they may resolve after childbirth. In women taking oral contraceptives, they may resolve after stopping these contraceptives. The spider angiomas associated with liver disease may resolve when liver function increases or when a liver transplant is performed.
For spider angiomas on the face, techniques such as electrodesiccation and laser treatment can be used to remove the lesion. There is a small risk of a scar, although the results are generally good. Spider angiomas can recur after treatment.
These lesions generally do not require treatment. If they are cosmetically unappealing or are subject to bleeding angiomas may be removed by electrocautery, a process of destroying the tissue by use of a small probe with an electric current running through it. Removal may cause scarring. More recently pulsed dye laser or intense pulsed light (IPL) treatment has also been used.
Future treatment based on a locally acting inhibitor of MEK1 and Cyclin E1 could possibly be an option. A natural MEK1 inhibitor is myricetin
Gradient-Echo T2WI magnetic resonance imaging (MRI) is most sensitive method for diagnosing cavernous hemangiomas. MRI is such a powerful tool for diagnosis, it has led to an increase in diagnosis of cavernous hemangiomas since the technology's advent in the 1980s. The radiographic appearance is most commonly described as "popcorn" or "mulberry"-shaped. Computed tomography (CT) scanning is not a sensitive or specific method for diagnosing cavernous hemangiomas. Angiography is typically not necessary, unless it is required to rule out other diagnoses. Additionally, biopsies can be obtained from tumor tissue for examination under a microscope. It is essential to diagnose cavernous hemangioma because treatments for this benign tumor are less aggressive than that of cancerous tumors, such as angiosarcoma. However, since MRI appearance is practically pathognomonic, biopsy is rarely needed for verification.
A capillary hemangioma (also known as an Infantile hemangioma, Strawberry hemangioma, and Strawberry nevus) is the most common variant of hemangioma which appears as a raised, red, lumpy area of flesh anywhere on the body, though 83% occur on the head or neck area. These marks occur in about 10% of all births, and usually appear between one and four weeks after birth. It may grow rapidly, before stopping and slowly fading. Some are gone by the age of 2, about 60% by 5 years, and 90–95% by 9 years. Capillary hemangioma is a vascular anomaly.
Capillary hemangiomas occur 5 times more often in female infants than in males, and mostly in Caucasian populations. Additionally, low birthweight infants have a 26% chance of developing a hemangioma.
It is the most common tumor of orbit and periorbital areas in childhood. It may occur in the skin, subcutaneous tissues and mucous membranes of oral cavities and lips as well as in the liver, spleen and kidneys. While this birthmark may be alarming in appearance, physicians generally counsel that it be left to disappear on its own, unless it is in the way of vision or blocking the nostrils.
In the treatment of a brain cavernous hemangioma, neurosurgery is usually the treatment chosen. Research needs to be conducted on the efficacy of treatment with stereotactic radiation therapy, especially on the long-term. However, radiotherapy is still being studied as a form of treatment if neurosurgery is too dangerous due the location of the cavernoma. Genetic researchers are still working on determining the cause of the illness and the mechanism behind blood vessel formation. Clinical trials are being conducted to better assess when it is appropriate to treat a patient with this malformation and with what treatment method. Additionally, long term studies are being conducted because there is no information related to the long-term outlook of patients with cavernoma. A registry exists known as The International Cavernous Angioma Patient Registry collects information from patients diagnosed with cavernoma in order to facilitate discovery of non-invasive treatments.
Due to its overwhelming incidence on the gingiva, the condition is often associated with two other diseases, though not because they occur together. Instead, the three are associated with each other because they appear frequently on gingiva—peripheral giant cell granuloma and peripheral ossifying fibroma. Detailed analysis can be used to distinguish these conditions.
Prognosis is usually good, however recurrence may happen with rate up to 16%. Presence of myxoid structures in the pyogenic granuloma may be the main cause of recurrence.
Although pyogenic granulomas are not infectious or malignant, treatment may be considered because of bleeding or ulceration. Frequently, pyogenic granulomas are treated with electrodesiccation (cauterization) and curettage (excision), though laser treatment using pulsed dye laser or CO laser is often effective.
Several reports have demonstrated the efficacy of topical application of the beta-adrenergic antagonist timolol in the treatment of pediatric pyogenic granuloma.
There is usually no treatment if the pyogenic granuloma occurs during pregnancy since the lesion may heal spontaneously. Recurrent bleeding in either oral or nasal lesions may necessitate excision and cauterization sooner, however. If aesthetics are a concern, then treatment may be pursued as well. Usually, only minor surgery may be needed, along with a dental cleaning for oral lesions to remove any calculus or other source of irritation. For nasal lesions, nose-picking should be discouraged.
Littoral cell angiomas show in CT scans. They are diagnosed by pathologists by taking a sample of the tumour via Fine Needle Aspiration or Core Needle Aspiration or from a splenectomy. Histologically, they have anastoming small vascular channels and cystic spaces with papillary projections.
Kaposiform hemangioendothelioma (KHE) is a rare vascular neoplasm that is locally aggressive but without metastatic potential. It occurs particularly in the skin, deep soft tissue, retroperitoneum, mediastinum, and rarely in bone. Although lesions occur solitary, they often involve large areas of the body, such as the head/neck region (40%), trunk (30%), or extremity (30%).
Usually, it is present at birth as a flat, reddish-purple, tense and edematous lesion.
Although half of lesions are congenital, 58% of KHE develop during infancy, 32% between age 1 and 10 years (32%) and 10% after 11 years of age. Moreover, adult onset has been described too with mainly males being affected. Both sexes are affected equally in children.
Lesions are often greater than 5 cm in diameter and can cause visible deformity and pain. During early childhood, KHE may enlarge and after 2 years of age, it may partially regress. Though, it usually persists longterm. In addition, 50% of patients suffer from coagulopathy due to thrombocytopenia (<25,000/mm3), presenting with petechiae and bleeding. This is called the Kasabach-Merritt Phenomenon, which is caused by trapping of platelets and other clotting factors within the tumor. Kasabach-Merritt Phenomenon is less likely in patients with lesions less than 8 cm. As two-thirds of adult-onset KHE tumors are less than 2 cm, KHE in adults is rarely associated with Kasabach-Merritt Phenomenon.
Patients with KHE and Kasabach-Merritt Phenomenon present with petechiae and ecchymosis.
Most KHE tumors are diffuse involving multiple tissue planes and important structures. Resection of KHE is thus often difficult. Treatment of kaposiform hemangioendothelioma is therefore medical. The primary drug is interferon alfa, which is successful in 50% of children. Another option is vincristine, which has lots of side-effects, but has a response rate of 90%. Drug therapy is often used in shrinking the tumor and treating the coagulopathy. However, many of these kaposiform hemangioendotheliomas do not completely regress and remain as a much smaller asymptomatic tumor. However, KHE still has a high mortality rate of 30%. Although complete surgical removal with a large margin has the best reported outcome, it is usually not done because of the risk of bleeding, extensiveness, and the anatomic site of the lesion.
Operative management may be possible for small or localized lesions. Removal of larger areas also may be indicated for symptomatic patients or for patients who have failed farmacotherapy. Resection is not required for lesions that are not causing functional problems, because KHE is benign and because resection could cause deformity.
Congenital hemangioma can be distinguished from infantile hemangioma because it is fully developed at birth. It forms during prenatal life and has reached its maximal size at birth. Congenital hemangioma can even be diagnosed in utero by prenatal ultrasound. Unlike IH, CH is more common in the extremities, has an equal sex distribution, and is solitary, with an average diameter of 5 cm. It commonly presents in the head and neck and in the lower extremities.
Congenital hemangioma are divided into 2 subgroups: the rapidly involuting congenital hemangiomas (RICHs) and the non-involuting congenital hemangiomas(NICHs).
The rapidly involuting congenital hemangioma, RICH, presents at birth as a solitary raised tumor with a central depression, scar, or ulceration surrounded by a rim of pallor. It is noted for its involution, which typically begins several weeks after birth and is completed no later than 14 months of age. After regression RICH may cause a residual deformity, such as atrophic skin and subcutaneous tissue. It mainly affects the limbs (52%), but also the head and neck region (42%) and the trunk (6%).
The non-involuting congenital hemangioma, NICH, presents as a solitary, well-circumscribed reddish-pink to purple plaque with central telangiectasia and hypopigmented rim. In contrast to RICH, NICH does not involute and rarely ulcerates. It persists into late childhood and can even mimic a vascular malformation by growing commensurately with the child. Although NICH can resemble RICH in its external appearance, it can be differentiated from RICH by a greater elevation and coarse telangiectases. It mainly affects the head and neck region (43%), but also the limbs (38%) and the trunk (19%).
Surgical resection for congenital hemangiomas is rarely needed, because RICH undergoes postnatal regression and NICH is benign and often asymptomatic. Resection may be indicated to improve the appearance of the affected area, as long as the surgical scar is less noticeable than the lesion. Other indications are problematic ulcers with persistent bleeding or chronic infection.
Although most NICH lesions are non-problematic and do not cause significant deformity, the threshold for resection of NICH is lower, because it neither involutes, nor responds to pharmacotherapy. RICH tumors are observed until involution is completed. Involuted RICH may leave behind atrophic tissue, which can be reconstructed with autologous grafts. It is often best to postpone excision until regression is complete.
There are effective pharmacologic treatments, which include intralesional corticosteroid injection, systemic corticosteroid injection, interferon α-2a or α-2b and angiogenic inhibitors. The use of corticosteroids leads to accelerated regression in 30%, stabilization of growth in 40%, lightening of color and softening of the tumor. However, 30% shows minimal or no response. Another drug treatment is interferon α-2a or α-2b. It is often used for patients who did not respond to corticosteroids. Although the response rate is much slower, it has been successful for 80% of children treated. The most serious side effect of interferon is a spastic diplegia. Other therapeutic options are embolization and pulsed-dye laser, which improves residual telangiectasias in RICH and in NICH.
The incidence in the general population is roughly 0.5%, and clinical symptoms typically appear between 20 to 30 years of age. Once thought to be strictly congenital, these vascular lesions have been found to occur "de novo". It may appear either sporadically or exhibit autosomal dominant inheritance.
A tufted angioma (also known as an "Acquired tufted angioma," "Angioblastoma," "Angioblastoma of Nakagawa," "Hypertrophic hemangioma," "Progressive capillary hemangioma," and "Tufted hemangioma") usually develops in infancy or early childhood on the neck and upper trunk, and is an ill-defined, dull red macule with a mottled appearance, varying from 2 to 5 cm in diameter.
Hyperkeratotic cutaneous capillary-venous malformation is a cutaneous condition characterized also by inherited cerebral capillary malformations.
Phakomatosis pigmentovascularis is a rare neurocutanous condition where there is coexistence of a capillary malformation (port-wine stain) with various melanocytic lesions, including dermal melanocytosis (Mongolian spots), nevus spilus, and nevus of Ota.
Making a correct diagnosis for a genetic and rare disease is often times very challenging. So the doctors and other healthcare professions rely on the person’s medical history, the severity of the symptoms, physical examination and lab tests to make and confirm a diagnosis.
There is a possibility of interpreting the symptoms of PWS with other conditions such as AVMs and or AVFs. This is because AVMs and AVFs also involve the characteristic overgrowth in soft tissue, bone and brain. Also PWS can be misdiagnosed with Klippel–Trenaunay syndrome (KTS). However, KTS consists of the following: triad capillary malformation, venous malformation, and lymphatic malformation.
Usually a specific set of symptoms such as capillary and arteriovenous malformations occur together and this is used to distinguish PWS from similar conditions. Arteriovenous malformations (AVMs) and arteriovenous fistulas (AVFs) are caused by RASA1 mutations as well. Therefore, if all the other tests (discussed below) fail to determine PWS, which is highly unlikely, genetic testing such as sequence analysis and gene-targeted deletion/duplication analysis can be performed to identify possible RASA1 gene mutations.
But PWS can be distinguished from other conditions because of its defining port-wine stains that are large, flat and pink. The port-wine stains and physical examination are enough to diagnose PWS. But additional testing is necessary to determine the extent of the PWS syndrome. The following tests may be ordered by physicians to help determine the appropriate next steps: MRI, ultrasound, CT/CAT scan, angiogram, and echocardiogram.
MRI: This is a high-resolution scan that is used to identify the extent of the hypertrophy or overgrowth of the tissues. This can also be used to identify other complications that may arise a result of hypertrophy.
Ultrasound: this can be necessary to examine the vascular system and determine how much blood is actually flowing through the AVMs.
CT/CAT scan: this scan is especially useful for examining the areas affected by PWS and is helpful for evaluating the bones in the overgrown limb.
Angiogram: an angiogram can also be ordered to get a detailed look at the blood vessels in the affected or overgrown limb. In this test an interventional radiologist injects a dye into the blood vessels that will help see how the blood vessels are malformed.
Echocardiogram: depending on the intensity of the PWS syndrome, an echo could also be ordered to check the condition of the heart.
And PWS often requires a multidisciplinary care. Depending on the symptoms, patients are dependent on: dermatologists, plastic surgeons, general surgeons, interventional radiologists, orthopedists, hematologists, neurosurgeons, vascular surgeons and cardiologists. Since the arteriovenous and capillary malformations cannot be completely reconstructed and depending on the extent and severity of the malformations, these patients may be in the care of physicians for their entire lives.
Phakomatosis pigmentovascularis is subdivided into five types:
- Type 1 PWS + epidermal nevus
- Type 2 (most common): PWS + dermal melanocytosis +/- nevus anemicus
- Type 3: PWS + nevus spilus +/- nevus anemicus
- Type 4: PWS + nevus spilus + dermal melanocytosis +/- nevus anemicus
- Type 5: CMTC (Cutis marmorata telangiectatica congenita) + dermal melanocytosis
They all can contain capillary malformation. Type 2 is the most common and can be associated with granular cell tumor. Some further subdivide each type into categories A & B; with A representing oculocutaneous involvement and subtype B representing extra oculocutaneous involvement. Others have proposed fewer subtypes but currently this rare entity is mostly taught as having five subtypes currently.
A spider angioma (also known as a nevus araneus, spider nevus, vascular spider, and spider telangiectasia) is a type of telangiectasis (swollen blood vessels) found slightly beneath the skin surface, often containing a central red spot and reddish extensions which radiate outwards like a spider's web. They are common and may be benign, presenting in around 10–15% of healthy adults and young children. However, having more than three spider angiomas is likely to be abnormal and may be a sign of liver disease. It also suggests the probability of esophageal varices.
The causes for PWS are either genetic or unknown. Some cases are a direct result of the RASA1 gene mutations. And individuals with RASA1 can be identified because this genetic mutation always causes multiple capillary malformations. PWS displays an autosomal dominant pattern of inheritance. This means that one copy of the damaged or altered gene is sufficient to elicit PWS disorder. In most cases, PWS can occur in people that have no family history of the condition. In such cases the mutation is sporadic. And for patients with PWS with the absence of multiple capillary mutations, the causes are unknown.
According to Boston’s Children Hospital, no known food, medications or drugs can cause PWS during pregnancy. PWS is not transmitted from person to person. But it can run in families and can be inherited. PWS effects both males and females equally and as of now no racial predominance is found
At the moment, there are no known measures that can be taken in order to prevent the onset of the disorder. But Genetic Testing Registry can be great resource for patients with PWS as it provides information of possible genetic tests that could be done to see if the patient has the necessary mutations. If PWS is sporadic or does not have RASA1 mutation then genetic testing will not work and there is not a way to prevent the onset of PWS.
Capillary aneurysms are flesh colored solitary lesions, resembling an intradermal nevus, which may suddenly grow larger and darker and become blue-black or black as a result of thrombosis.
LCAs most often are not clinically detectable. On occasion, their first presentation may be with splenic rupture.
Most patients show no symptoms and the tumours are found incidentally.