Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Medical imaging techniques such as X-rays, ultrasound, computed tomography (CT), and magnetic resonance imaging (MRI) are often used in evaluating animals with suspected liver tumors. Ultrasound-guided fine-needle aspiration or needle-core biopsy of liver masses are useful diagnostic tools that are minimally invasive to obtain samples for histopathological analysis.
Hemangiosarcoma can cause a wide variety of hematologic and hemostatic abnormalities, including anemia, thrombocytopenia (low platelet count), disseminated intravascular coagulation (DIC); presence of nRBC, schistocytes, and acanthocytes in the blood smear; and leukocytosis with neutrophilia, left shift, and monocytosis.
A definitive diagnosis requires biopsy and histopathology. Cytologic aspirates are usually not recommended, as the accuracy rate for a positive diagnosis of malignant splenic disease is approximately 50%. This is because of frequent blood contamination and poor exfoliation. Surgical biopsy is the typical approach in veterinary medicine.
Biopsy of affected lymph nodes or organs confirms the diagnosis, although a needle aspiration of an affected lymph node can increase suspicion of the disease. X-rays, ultrasound and bone marrow biopsy reveal other locations of the cancer. There are now a range of blood tests that can be utilised to aid in the diagnosis of lymphoma. Flow cytometry detects antibodies linked to tumour cell surface antigens in fluid samples or cell suspensions. Polymerase chain reaction (PCR) for antigen receptor rearrangements (PARR) identifies circulating tumour cells based on unique genetic sequences. The canine Lymphoma Blood Test (cLBT) measures multiple circulating biomarkers and utilises a complex algorithm to diagnose lymphoma. This test utilises the acute phase proteins (C-Reactive Protein and Haptoglobin). In combination with basic clinical symptoms, it gives in differential diagnosis the sensitivity 83.5% and specificity 77%. The TK canine cancer panel is an indicator of general neoplastic disease. The stage of the disease is important to treatment and prognosis. Certain blood tests have also been shown to be prognostic.
The stage of the disease is important to treatment and prognosis.
- Stage I - only one lymph node or lymphoid tissue in one organ involved.
- Stage II - lymph nodes in only one area of the body involved.
- Stage III - generalized lymph node involvement.
- Stage IV - any of the above with liver or spleen involvement.
- Stage V - any of the above with blood or bone marrow involvement.
Each stage is divided into either "substage a", those without systemic symptoms; or "substage b", those with systemic symptoms such as fever, loss of appetite, weight loss, and fatigue.
Littoral cell angiomas show in CT scans. They are diagnosed by pathologists by taking a sample of the tumour via Fine Needle Aspiration or Core Needle Aspiration or from a splenectomy. Histologically, they have anastoming small vascular channels and cystic spaces with papillary projections.
Surgical treatment is recommended for cats and dogs diagnosed with primary liver tumors but not metastasis to the liver. There are not many treatment options for animals who have multiple liver lobes affected.
DSRCT is frequently misdiagnosed. Adult patients should always be referred to a sarcoma specialist. This is an aggressive, rare, fast spreading tumor and both pediatric and adult patients should be treated at a sarcoma center.
There is no standard protocol for the disease; however, recent journals and studies have reported that some patients respond to high-dose (P6 Protocol) chemotherapy, maintenance chemotherapy, debulking operation, cytoreductive surgery, and radiation therapy. Other treatment options include: hematopoietic stem cell transplantation, intensity-modulated radiation Therapy, radiofrequency ablation, stereotactic body radiation therapy, intraperitoneal hyperthermic chemoperfusion, and clinical trials.
Because this is a rare tumor, not many family physicians or oncologists are familiar with this disease. DSRCT in young patients can be mistaken for other abdominal tumors including rhabdomyosarcoma, neuroblastoma, and mesenteric carcinoid. In older patients DSRCT can resemble lymphoma, peritoneal mesothelioma, and peritoneal carcinomatosis. In males DSRCT may be mistaken for germ cell or testicular cancer while in females DSRCT can be mistaken for Ovarian cancer. DSRCT shares characteristics with other small-round blue cell cancers including Ewing's sarcoma, acute leukemia, small cell mesothelioma, neuroblastoma, primitive neuroectodermal tumor, rhabdomyosarcoma, and Wilms' tumor.
This disease is often discovered during surgery for other conditions, e.g., hernia repair, following which an experienced pathologist can confirm the diagnosis. Advanced stages may present as tumors palpable on the abdomen or distention of the belly ("jelly belly" is sometimes used as a slang term for the condition). Due to the rarity of this disease, it is important to obtain an accurate diagnosis so that appropriate treatment may be obtained from a surgical oncologist who specializes in appendix cancer. Diagnostic tests may include CT scans, examination of tissue samples obtained through laparoscopy, and the evaluation of tumor markers. In most cases a colonoscopy is unsuitable as a diagnostic tool because in most cases appendix cancer invades the abdominal cavity but not the colon (however, spread inside the colon is occasionally reported). PET scans may be used to evaluate high-grade mucinous adenocarcinoma, but this test is not reliable for detecting low-grade tumors because those do not take up the dye which shows up on scans. New MRI procedures are being developed for disease monitoring, but standard MRIs are not typically used as a diagnostic tool. Diagnosis is confirmed through pathology.
Treatment includes chemotherapy and, where practical, removal of the tumor with the affected organ, such as with a splenectomy. Splenectomy alone gives an average survival time of 1–3 months. The addition of chemotherapy, primarily comprising the drug doxorubicin, alone or in combination with other drugs, can increase the average survival time to 2-4 months, or more.
A more favorable outcome has been demonstrated in recent research conducted at University of Pennsylvania Veterinary School, in dogs treated with a compound derived from the Coriolus versicolor (commonly known as "Turkey Tail") mushroom:
“We were shocked,” Cimino Brown said. “Prior to this, the longest reported median survival time of dogs with hemangiosarcoma of the spleen that underwent no further treatment was 86 days. We had dogs that lived beyond a year with nothing other than this mushroom as treatment.”There were not statistically significant differences in survival between the three dosage groups, though the longest survival time was highest in the 100 mg group, at 199 days, eclipsing the previously reported survival time.
The results were so surprising, in fact, that the researchers asked Penn Vet pathologists to recheck the dogs’ tissue biopsies to make sure that the dogs really had the disease.
“They reread the samples and said, yes, it’s really hemangiosarcoma,” Cimino Brown said.
Chemotherapy is available for treating hemangiosarcoma, but many owners opt not to pursue that treatment once their dog is diagnosed.
“It doesn’t hugely increase survival, it’s expensive and it means a lot of back and forth to the vet for the dog,” Cimino Brown said. “So you have to figure in quality of life.”
This treatment does not always work. So, one should always be prepared for their pet to have the same survival time as a dog who is untreated.
Visceral hemangiosarcoma is usually fatal even with treatment, and usually within weeks or, at best, months. In the skin, it can be cured in most cases with complete surgical removal as long as there is not visceral involvement.
In order to diagnose MALT, a biopsy is needed from the affected tissue. If the abnormal tissue is suspected to be in the stomach or bowel, an endoscopy is done in order to get the biopsy. This requires either a gastroscopy or colonoscopy. If the lymphoma is thought to have spread to other areas in this region, an ultrasound scan is often done at the same time. If the abnormal tissue is thought to be in the lungs, a bronchoscopy is ordered.
In order to determine the correct type of lymphoma and stage it accurately, the physician will also need to do a physical exam, blood tests to determine blood cell counts, a CT scan, an MRI and/or a PET scan. A PET scan is the most important in planning a course of treatment.
A bone marrow biopsy may be ordered to test for lymph node involvement. If the lymphoma is in the stomach, the physician will test for H.pylori infection through a stool sample. This infection would be necessary to treat in conjunction to treating the cancer.
Due to the high risk of recurrence and ensuing problems, close monitoring of dogs undergoing chemotherapy is important. The same is true for dogs that have entered remission and ceased treatment. Monitoring for disease and remission/recurrence is usually performed by palpation of peripheral lymph nodes. This procedure detects gross changes in peripheral lymph nodes. Some of the blood tests used in diagnosing lymphoma also offer greater objectivity and provide an earlier warning of an animal coming out of remission.
Complete cure is rare with lymphoma and treatment tends to be palliative, but long remission times are possible with chemotherapy. With effective protocols, average first remission times are 6 to 8 months. Second remissions are shorter and harder to accomplish. Average survival is 9 to 12 months. The most common treatment is a combination of cyclophosphamide, vincristine, prednisone, L-asparaginase, and doxorubicin. Other chemotherapy drugs such as chlorambucil, lomustine (CCNU), cytosine arabinoside, and mitoxantrone are sometimes used in the treatment of lymphoma by themselves or in substitution for other drugs. In most cases, appropriate treatment protocols cause few side effects, but white blood cell counts must be monitored.
Allogeneic and autologous stem cell transplantations (as is commonly done in humans) have recently been shown to be a possible treatment option for dogs. Most of the basic research on transplantation biology was generated in dogs. Current cure rates using stem cell therapy in dogs approximates that achieved in humans, 40-50%.
When cost is a factor, prednisone used alone can improve the symptoms dramatically, but it does not significantly affect the survival rate. The average survival times of dogs treated with prednisone and untreated dogs are both one to two months. Using prednisone alone can cause the cancer to become resistant to other chemotherapy agents, so it should only be used if more aggressive treatment is not an option.
Isotretinoin can be used to treat cutaneous lymphoma.
Splenic MZL is difficult to diagnose and can look similar to other types of lymphoma. Tests include a physical examination, blood tests to determine overall health and detect infections (ex. hepatitis C), a bone marrow biopsy, CT scan, and a PET scan. Sometimes a splenectomy is necessary during the diagnosis process in order to determine the exact type of lymphoma. If the spleen is removed, you will be at a larger risk of infection.
LCAs most often are not clinically detectable. On occasion, their first presentation may be with splenic rupture.
Most patients show no symptoms and the tumours are found incidentally.
Surgery may be difficult due to the location of these tumors. Surgery alone often leads to recurrence. Chemotherapy is very effective for TVTs. The prognosis for complete remission with chemotherapy is excellent. The most common chemotherapy agents used are vincristine, vinblastine, and doxorubicin. Radiotherapy may be required if chemotherapy does not work.
Treatment is variable, both due to its rarity and to its frequently slow-growing nature. Treatment ranges from watchful waiting to debulking and hyperthermic intraperitoneal chemotherapy (HIPEC, also called intraperitoneal hyperthermic chemotherapy, IPHC) with cytoreductive surgery.
Apart from not smoking, the American Cancer Society recommends keeping a healthy weight, and increasing consumption of fruits, vegetables, and whole grains, while decreasing consumption of red and processed meat, although there is no consistent evidence this will prevent or reduce pancreatic cancer specifically. A 2014 review of research concluded that there was evidence that consumption of citrus fruits and curcumin reduced risk of pancreatic cancer, while there was possibly a beneficial effect from whole grains, folate, selenium, and non-fried fish.
In the general population, screening of large groups is not currently considered effective, although newer techniques, and the screening of tightly targeted groups, are being evaluated. Nevertheless, regular screening with endoscopic ultrasound and MRI/CT imaging is recommended for those at high risk from inherited genetics.
Treatment of small melanomas is often not necessary, but large tumors can cause discomfort and are usually surgically removed. Cisplatin and cryotherapy can be used to treat small tumors less than 3 centimeters, but tumors may reoccur. Cimetidine, a histamine stimulator, can cause tumors to regress in some horses, but may take up to 3 months to produce results and multiple treatments may be needed throughout the horse's life. There are few viable treatment options for horses with metastatic melanoma. However, gene therapy injections utilizing interleukin-12 and 18-encoding DNA plasmids have shown promise in slowing the progression of tumors in patients with metastatic melanoma.
The 2010 WHO classification of tumors of the digestive system grades all the pancreatic neuroendocrine tumors (PanNETs) into three categories, based on their degree of cellular differentiation (from "NET G1" through to the poorly differentiated "NET G3"). The U.S. National Comprehensive Cancer Network recommends use of the same AJCC-UICC staging system as pancreatic adenocarcinoma. Using this scheme, the stage-by-stage outcomes for PanNETs are dissimilar to those of the exocrine cancers. A different TNM system for PanNETs has been proposed by the European Neuroendocrine Tumor Society.
Lymphoma is the most common type of blood-related cancer in horses and while it can affect horses of all ages, it typically occurs in horses aged 4–11 years.
All advances in the understanding and treatment of FDCS come from advances made in other cancers. Funding for research is hard to come by and being such a rare cancer FDCS does not receive monetary priority. CHOP, Gemcitabine, and Taxotere were all initially developed for other cancers, but mutually mutated pathways allow for its use in FDCS. The hallmarks of cancer have helped physicians realize that there are biological commonalities between seemingly very different cancer types that can be exploited to develop new and better treatment plans. While standards of care for FDCS patients have progressed rapidly over the last twenty years the process is slowing. When FDCS was “discovered” in 1986 there was no standard of treatment. Now, 25 years later, there are multiple chemotherapeutic agents used, clinical trials available, and a much greater knowledge of its mechanism of action. This rapid response occurred because physicians modified the use of pre-existing drugs. Financial restrictions mean that further advances rely on research made on other cancer types. Fortunately with constant progress in research technology this process is becoming much faster. The more we know about acquired capabilities of cancer, the more we can target those pathways, put new drugs on the market, and hopefully bring the word "cure" into view.
One such development is in the delivery of doxorubicin. While it is an effective inducer of apoptosis, doxorubicin is quickly filtered out of the body. By loading a PEG-liposome with doxorubicin the circulation time and localization to tumors greatly increases. Cancerous tumors characteristically have extensive angiogenesis and leaky vasculatures, which causes the PEG-liposomes to naturally accumulate in the tumor. This also allows for patients to receive lower and fewer doses of the drug and experience fewer side effects. This is also being attempted with nanoparticles but has not been tested on FDCS. In 2008 COP plus (PEG)-liposomal doxorubicin went into a clinical trial for an FDCS patient to replace the CHOP regimen, and after 5 years the patient remains in CR.
Epidemiologically, the disorder usually develops slowly and is mainly observed in people over the age of 50. It may also develop as a side-effect of treatment with some drugs that target hematological disorders, such as polycythemia vera or chronic myelogenous leukemia.
Diagnosis of myelofibrosis is made on the basis of bone marrow biopsy. A physical exam of the abdomen may reveal enlargement of the spleen, the liver, or both.
Blood tests are also used in diagnosis. Primary myelofibrosis can begin with a blood picture similar to that found in polycythemia vera or chronic myelogenous leukemia. Most people with myelofibrosis have moderate to severe anemia. Eventually thrombocytopenia, a decrease of blood platelets develops. When viewed through a microscope, a blood smear will appear markedly abnormal, with presentation of pancytopenia, which is a reduction in the number of all blood cell types: red blood cells, white blood cells, and platelets. Red blood cells may show abnormalities including bizarre shapes, such as teardrop-shaped cells, and nucleated red blood cell precursors may appear in the blood smear. (Normally, mature red blood cells in adults do not have a cell nucleus, and the presence of nucleated red blood cells suggests that immature cells are being released into the bloodstream in response to a very high demand for the bone marrow to produce new red blood cells.) Immature white cells are also seen in blood samples, and basophil counts are increased.
When late in the disease progression an attempt is made to take a sample of bone marrow by aspiration, it may result in a dry tap, meaning that where the needle can normally suck out a sample of semi-liquid bone marrow, it produces no sample because the marrow has been replaced with collagen fibers. A bone marrow biopsy will reveal collagen fibrosis, replacing the marrow that would normally occupy the space.
Hodgkin's lymphoma must be distinguished from non-cancerous causes of lymph node swelling (such as various infections) and from other types of cancer. Definitive diagnosis is by lymph node biopsy (usually excisional biopsy with microscopic examination). Blood tests are also performed to assess function of major organs and to assess safety for chemotherapy. Positron emission tomography (PET) is used to detect small deposits that do not show on CT scanning. PET scans are also useful in functional imaging (by using a radiolabeled glucose to image tissues of high metabolism). In some cases a Gallium scan may be used instead of a PET scan.
The diagnosis of HCL may be suggested by abnormal results on a complete blood count (CBC), but additional testing is necessary to confirm the diagnosis. A CBC normally shows low counts for white blood cells, red blood cells, and platelets in HCL patients. However, if large numbers of hairy cells are in the blood stream, then normal or even high lymphocyte counts may be found.
On physical exam, 80–90% of patients have an enlarged spleen, which can be massive. This is less likely among patients who are diagnosed at an early stage. Peripheral lymphadenopathy (enlarged lymph nodes) is uncommon (less than 5% of patients), but abdominal lymphadenopathy is a relatively common finding on computed tomography (CT) scans.
The most important lab finding is the presence of hairy cells in the bloodstream. Hairy cells are abnormal white blood cells with hair-like projections of cytoplasm; they can be seen by examining a blood smear or bone marrow biopsy specimen. The blood film examination is done by staining the blood cells with Wright's stain and looking at them under a microscope. Hairy cells are visible in this test in about 85% of cases.
Most patients require a bone marrow biopsy for final diagnosis. The bone marrow biopsy is used both to confirm the presence of HCL and also the absence of any additional diseases, such as Splenic marginal zone lymphoma or B-cell prolymphocytic leukemia. The diagnosis can be confirmed by viewing the cells with a special stain known as TRAP (tartrate resistant acid phosphatase). More recently, DB44 testing assures more accurate results.
It is also possible to definitively diagnose hairy cell leukemia through flow cytometry on blood or bone marrow. The hairy cells are larger than normal and positive for CD19, CD20, CD22, CD11c, CD25, CD103, and FMC7. (CD103, CD22, and CD11c are strongly expressed.)
Hairy cell leukemia-variant (HCL-V), which shares some characteristics with B cell prolymphocytic leukemia (B-PLL), does not show CD25 (also called the Interleukin-2 receptor, alpha). As this is relatively new and expensive technology, its adoption by physicians is not uniform, despite the advantages of comfort, simplicity, and safety for the patient when compared to a bone marrow biopsy. The presence of additional lymphoproliferative diseases is easily checked during a flow cytometry test, where they characteristically show different results.
The differential diagnoses include: several kinds of anemia, including myelophthisis and aplastic anemia, and most kinds of blood neoplasms, including hypoplastic myelodysplastic syndrome, atypical chronic lymphocytic leukemia, B-cell prolymphocytic leukemia, or idiopathic myelofibrosis.
The first test for diagnosis myelophthisis involves looking at a small sample of blood under a microscope. Myelophthisis is suggested by the presence of red blood cells that contain nuclei or are teardrop-shaped (dacryocytes), or immature granulocyte precursor cells which indicates leukoerythroblastosis is occurring because the displaced hematopoietic cells begin to undergo extramedullary hematopoiesis. These immature granulocytes are seen in peripheral blood smears. Diagnosis is confirmed when a bone marrow biopsy demonstrates significant replacement of the normal bone marrow compartment by fibrosis, malignancy or other infiltrative process. The presence of immature blood cell precursors helps distinguish another cause of pancytopenia, aplastic anemia, from myelophthisic anemia because in aplastic anemia the hematopoietic cells are damaged and immature blood cells are not seen in the peripheral blood.
There may be evidence of extramedullary hematopoiesis (marrow elements can be found in the spleen, liver).