Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Checking the cervix by the Papanicolaou test, or Pap test, for cervical cancer has been credited with dramatically reducing the number of cases of and mortality from cervical cancer in developed countries. Pap test screening every three to five years with appropriate follow-up can reduce cervical cancer incidence up to 80%. Abnormal results may suggest the presence of precancerous changes, allowing examination and possible preventive treatment. The treatment of low-grade lesions may adversely affect subsequent fertility and pregnancy. Personal invitations encouraging women to get screened are effective at increasing the likelihood they will do so. Educational materials also help increase the likelihood women will go for screening, but they are not as effective as invitations.
According to the 2010 European guidelines, the age at which to start screening ranges between 20 and 30 years of age, but preferentially not before age 25 or 30 years, and depends on burden of the disease in the population and the available resources.
In the United States, screening is recommended to begin at age 21, regardless of age at which a woman began having sex or other risk factors. Pap tests should be done every three years between the ages of 21 and 65. In women over the age of 65, screening may be discontinued if no abnormal screening results were seen within the previous 10 years and no history of CIN 2 or higher exists. HPV vaccination status does not change screening rates. Screening can occur every 5 years between ages 30 and 65 when a combination of cervical cytology screening and HPV testing is used and this is preferred. However, it is acceptable to screen this age group with a Pap test alone every three years. Screening is not beneficial before age 25 as the rate of disease is low. Screening is not beneficial in women older than 60 years if they have a history of negative results. The American Society of Clinical Oncology (ASCO) guideline has recommend for different levels of resource availability.
Liquid-based cytology is another potential screening method. Although it was probably intended to improve on the accuracy of the Pap test, its main advantage has been to reduce the number of inadequate smears from around 9% to around 1%. This reduces the need to recall women for a further smear. The United States Preventive Services Task Force supports screening every 5 years in those who are between 30 and 65 years when cytology is used in combination with HPV testing.
Pap tests have not been as effective in developing countries. This is in part because many of these countries have an impoverished health care infrastructure, too few trained and skilled professionals to obtain and interepret Pap tests, uninformed women who get lost to follow-up, and a lengthy turn-around time to get results. These realities have resulted in the investigation of cervical screening approaches that use fewer resources and offer rapid results such as visual inspection with acetic acid or HPV DNA testing.
Several tests are used to diagnose vaginal cancer, including:
- Physical exam and history
- Pelvic exam
- Pap smear
- Biopsy
- Colposcopy
Recommendations for women with vaginal cancer is not to have routine surveillance imaging to monitor the cancer unless they have new symptoms or rising tumor markers. Imaging without these indications is discouraged because it is unlikely to detect a recurrence or improve survival, and because it has its own costs and side effects. MRI provides visualization of the extent of vaginal cancer.
Prevention
A pelvic examination may detect an adnexal mass. A CA-125 blood test is a nonspecific test that tends to be elevated in patients with tubal cancer. More specific tests are a gynecologic ultrasound examination, a CT scan, or an MRI of the pelvis.
Occasionally, an early fallopian tube cancer may be detected serendipitously during pelvic surgery.
HGPIN in isolation does not require treatment. In prostate biopsies it is not predictive of prostate cancer in one year if the prostate was well-sampled, i.e. if there were 8 or more cores.
The exact timing of repeat biopsies remains an area of controversy, as the time required for, and probability of HGPIN transformations to prostate cancer are not well understood.
There is no simple and reliable way to test for ovarian cancer in women who do not have any signs or symptoms. The Pap test does not screen for ovarian cancer.
Screening is not recommended in women who are at average risk, as evidence does not support a reduction in death and the high rate of false positive tests may lead to unneeded surgery, which is accompanied by its own risks.
Ovarian cancer is usually only palpable in advanced stages. Screening is not recommended using CA-125 measurements, HE4 levels, ultrasound, or adnexal palpation in women who are at average risk. Risk of developing ovarian cancer in those with genetic factors can be reduced. Those with a genetic predisposition may benefit from screening. This high risk group has benefited with earlier detection.
Ovarian cancer has low prevalence, even in the high-risk group of women from the ages of 50 to 60 (about one in 2000), and screening of women with average risk is more likely to give ambiguous results than detect a problem which requires treatment. Because ambiguous results are more likely than detection of a treatable problem, and because the usual response to ambiguous results is invasive interventions, in women of average risk, the potential harms of having screening without an indication outweigh the potential benefits. The purpose of screening is to diagnose ovarian cancer at an early stage, when it is more likely to be treated successfully.
Screening with transvaginal ultrasound, pelvic examination, and CA-125 levels can be used instead of preventative surgery in women who have BRCA1 or BRCA2 mutations. This strategy has shown some success.
HGPIN is diagnosed from tissue by a pathologist, which may come from:
- a needle biopsy taken via the rectum and,
- surgical removal of prostate tissue:
- transurethral resection of the prostate - removal of extra prostate tissue to improve urination (a treatment for benign prostatic hyperplasia),
- radical prostatectomy - complete removal of prostate and seminal vesicles (a treatment for prostate cancer).
Blood tests for prostate specific antigen (PSA), digital rectal examination, ultrasound scanning of the prostate via the rectum, fine needle aspiration or medical imaging studies (such as magnetic resonance imaging) are "not" useful for diagnosing HGPIN.
Cervical cancer is staged by the International Federation of Gynecology and Obstetrics (FIGO) staging system, which is based on clinical examination, rather than surgical findings. It allows only these diagnostic tests to be used in determining the stage: palpation, inspection, colposcopy, endocervical curettage, hysteroscopy, cystoscopy, proctoscopy, intravenous urography, and X-ray examination of the lungs and skeleton, and cervical conization.
Prognosis depends to a large degree on the stage of the condition. In 1991 it was reported that about half of the patients with advanced stage disease survived 5 years with a surgical approach followed by cisplatinum-based chemotherapy.
Overall, five-year survival rates for vulvar cancer are around 78% but may be affected by individual factors including cancer stage, cancer type, patient age and general medical health. Five-year survival is greater than 90% for patients with stage I lesions but decreases to 20% when pelvic lymph nodes are involved. Lymph node involvement is the most important predictor of prognosis. Thus, early diagnosis is important.
Routine screening of asymptomatic people is not indicated, since the disease is highly curable in its early, symptomatic stages. Instead, women, particularly menopausal women, should be aware of the symptoms and risk factors of endometrial cancer. A cervical screening test, such as a Pap smear, is not a useful diagnostic tool for endometrial cancer because the smear will be normal 50% of the time. A Pap smear can detect disease that has spread to the cervix. Results from a pelvic examination are frequently normal, especially in the early stages of disease. Changes in the size, shape or consistency of the uterus and/or its surrounding, supporting structures may exist when the disease is more advanced. Cervical stenosis, the narrowing of the cervical opening, is a sign of endometrial cancer when pus or blood is found collected in the uterus (pyometra or hematometra).
Women with Lynch syndrome should begin to have annual biopsy screening at the age of 35. Some women with Lynch syndrome elect to have a prophylactic hysterectomy and salpingo-oophorectomy to greatly reduce the risk of endometrial and ovarian cancer.
Transvaginal ultrasound to examine the endometrial thickness in women with postmenopausal bleeding is increasingly being used to aid in the diagnosis of endometrial cancer in the United States. In the United Kingdom, both an endometrial biopsy and a transvaginal ultrasound used in conjunction are the standard of care for diagnosing endometrial cancer. The homogeneity of the tissue visible on transvaginal ultrasound can help to indicate whether the thickness is cancerous. Ultrasound findings alone are not conclusive in cases of endometrial cancer, so another screening method (for example endometrial biopsy) must be used in conjunction. Other imaging studies are of limited use. CT scans are used for preoperative imaging of tumors that appear advanced on physical exam or have a high-risk subtype (at high risk of metastasis). They can also be used to investigate extrapelvic disease. An MRI can be of some use in determining if the cancer has spread to the cervix or if it is an endocervical adenocarcinoma. MRI is also useful for examining the nearby lymph nodes.
Dilation and curettage or an endometrial biopsy are used to obtain a tissue sample for histological examination. Endometrial biopsy is the less invasive option, but it may not give conclusive results every time. Hysteroscopy only shows the gross anatomy of the endometrium, which is often not indicative of cancer, and is therefore not used, unless in conjunction with a biopsy. Hysteroscopy can be used to confirm a diagnosis of cancer. New evidence shows that D&C has a higher false negative rate than endometrial biopsy.
Before treatment is begun, several other investigations are recommended. These include a chest x-ray, liver function tests, kidney function tests, and a test for levels of CA-125, a tumor marker that can be elevated in endometrial cancer.
Anatomical staging supplemented preclinical staging starting in 1988. FIGO’s revised TNM classification system uses tumor size (T), lymph node involvement (N) and presence or absence of metastasis (M) as criteria for staging. Stages I and II describe the early stages of vulvar cancer that still appear to be confined to the site of origin. Stage III cancers include greater disease extension to neighboring tissues and inguinal lymph nodes on one side. Stage IV indicates metastatic disease to inguinal nodes on both sides or distant metastases.
Diagnosis may include a fluorescence in situ hybridization (FISH) test, computed tomography urography (CTU), magnetic resonance urography (MRU), intravenous pyelography (IVP) x-ray, ureteroscopy, or biopsy.
Prostate cancer screening is an attempt to find unsuspected cancers. Initial screens may lead to more invasive follow-up tests such as a biopsy. Options include the digital rectal exam (DRE) and the prostate-specific antigen (PSA) blood test. Such screening is controversial and, in some people, may lead to unnecessary disruption and possibly harmful consequences. Routine screening with either a DRE or PSA is not supported by the evidence as there is no mortality benefit from screening.
The United States Preventive Services Task Force (USPSTF) recommends against the PSA test for prostate cancer screening in healthy men regardless of age. They concluded that the potential benefit of testing does not outweigh the expected harms. The Centers for Disease Control and Prevention shared that conclusion. The American Society of Clinical Oncology and the American College of Physicians discourages screening for those who are expected to live less than ten to fifteen years, while in those with a greater life expectancy a decision should be made by the person in question based on the potential risks and benefits. In general, they concluded, "it is uncertain whether the benefits associated with PSA testing for prostate cancer screening are worth the harms associated with screening and subsequent unnecessary treatment." American Urological Association (AUA 2013) guidelines call for weighing the benefits of preventing prostate cancer mortality in 1 man for every 1,000 men screened over a ten-year period against the known harms associated with diagnostic tests and treatment. The AUA recommends screening decisions in those 55 to 69 be based on shared decision making, and that if screening is performed it should occur no more often than every two years.
Screening by hysteroscopy to obtain cell samples obtained for histological examination is being developed. This is similar to the current pap smear that is used to detect cervical cancer. The UK Collaborative Trial of Ovarian Cancer Screening is testing a screening technique that combines CA-125 blood tests with transvaginal ultrasound. Other studies suggest that this screening procedure may be effective. However, it's not yet clear if this approach could actually help to save lives—the full results of the trial will be published in 2015. One major problem with screening is no clear progression of the disease from stage I (noninvasive) to stage III (invasive) is seen, and it may not be possible to find cancers before they reach stage III. Another problem is that screening methods tend to find too many suspicious lesions, most of which are not cancer, but malignancy can only be assessed with surgery. The ROCA method combined with transvaginal ultrasonography is being researched in high-risk women to determine if it is a viable screening method. It is also being investigated in normal-risk women as it has shown promise in the wider population. Studies are also in progress to determine if screening helps detect cancer earlier in people with BRCA mutations.
Diagnosis is established by transurethral biopsy. Types of urethral cancer include transitional cell carcinoma, squamous cell carcinoma, adenocarcinoma, and melanoma.
According to the NIH Consensus Conference , if DCIS is allowed to go untreated, the natural course or natural history varies according to the grade of the DCIS. Unless treated, approximately 60 percent of low-grade DCIS lesions will have become invasive at 40 years follow-up. High-grade DCIS lesions that have been inadequately resected and not given radiotherapy have a 50 percent risk of becoming invasive breast cancer within seven years. Approximately half of low-grade DCIS detected at screening will represent overdiagnosis, but overdiagnosis of high-grade DCIS is rare. The natural history of intermediate-grade DCIS is difficult to predict. Approximately one-third of malignant calcification clusters detected at screening mammography already have an invasive focus.
The prognosis of IDC depends, in part, on its histological subtype. Mucinous, papillary, cribriform, and tubular carcinomas have longer survival, and lower recurrence rates. The prognosis of the most common form of IDC, called "IDC Not Otherwise Specified", is intermediate. Finally, some rare forms of breast cancer (e.g., sarcomatoid carcinoma, inflammatory carcinoma) have a poor prognosis. Regardless of the histological subtype, the prognosis of IDC depends also on tumor size, presence of cancer in the lymph nodes, histological grade, presence of cancer in small vessels (vascular invasion), expression of hormone receptors and of oncogenes like HER2/neu.
These parameters can be entered into models that provide a statistical probability of systemic spread. The probability of systemic spread is a key factor in determining whether radiation and chemotherapy are worthwhile. The individual parameters are important also because they can predict how well a cancer will respond to specific chemotherapy agents.
Overall, the 5-year survival rate of invasive ductal carcinoma was approximately 85% in 2003.
In those who are being regularly screened, 5-alpha-reductase inhibitor (finasteride and dutasteride) reduce the overall risk of being diagnosed with prostate cancer; however, there is insufficient data to determine if they have an effect on the risk of death and may increase the chance of more serious cases.
The tumor marker CA-125 is frequently elevated in endometrial cancer and can be used to monitor response to treatment, particularly in serous cell cancer or advanced disease. Periodic MRIs or CT scans may be recommended in advanced disease and women with a history of endometrial cancer should receive more frequent pelvic examinations for the five years following treatment. Examinations conducted every three to four months are recommended for the first two years following treatment, and every six months for the next three years.
Women with endometrial cancer should not have routine surveillance imaging to monitor the cancer unless new symptoms appear or tumor markers begin rising. Imaging without these indications is discouraged because it is unlikely to detect a recurrence or improve survival, and because it has its own costs and side effects. If a recurrence is suspected, PET/CT scanning is recommended.
Prognosis and treatment is the same as for the most common type of ovarian cancer, which is epithelial ovarian cancer.
The median survival of primary peritoneal carcinomas is usually shorter by 2–6 months time when compared with serous ovarian cancer. Studies show median survival varies between 11.3–17.8 months. One study reported 19-40 month median survival (95% CI) with a 5-year survival of 26.5%.
Elevated albumin levels have been associated with a more favorable prognosis.
Carcinoma "in situ" is, by definition, a localized phenomenon, with no potential for metastasis unless it progresses into cancer. Therefore, its removal eliminates the risk of subsequent progression into a life-threatening condition.
Some forms of CIS (e.g., colon polyps and polypoid tumours of the bladder) can be removed using an endoscope, without conventional surgical resection. Dysplasia of the uterine cervix is removed by excision (cutting it out) or by burning with a laser. Bowen's disease of the skin is removed by excision. Other forms require major surgery, the best known being intraductal carcinoma of the breast (also treated with radiotherapy). One of the most dangerous forms of CIS is the "pneumonic form" of BAC of the lung, which can require extensive surgical removal of large parts of the lung. When too large, it often cannot be completely removed, with eventual disease progression and death of the patient.
Breast cancer screening refers to testing otherwise-healthy women for breast cancer in an attempt to achieve an earlier diagnosis under the assumption that early detection will improve outcomes. A number of screening tests have been employed including clinical and self breast exams, mammography, genetic screening, ultrasound, and magnetic resonance imaging.
A clinical or self breast exam involves feeling the breast for lumps or other abnormalities. Clinical breast exams are performed by health care providers, while self-breast exams are performed by the person themselves. Evidence does not support the effectiveness of either type of breast exam, as by the time a lump is large enough to be found it is likely to have been growing for several years and thus soon be large enough to be found without an exam. Mammographic screening for breast cancer uses X-rays to examine the breast for any uncharacteristic masses or lumps. During a screening, the breast is compressed and a technician takes photos from multiple angles. A general mammogram takes photos of the entire breast, while a diagnostic mammogram focuses on a specific lump or area of concern.
A number of national bodies recommend breast cancer screening. For the average woman, the U.S. Preventive Services Task Force recommends mammography every two years in women between the ages of 50 and 74, the Council of Europe recommends mammography between 50 and 69 with most programs using a 2-year frequency, and in Canada screening is recommended between the ages of 50 and 74 at a frequency of 2 to 3 years. These task force reports point out that in addition to unnecessary surgery and anxiety, the risks of more frequent mammograms include a small but significant increase in breast cancer induced by radiation.
The Cochrane collaboration (2013) states that the best quality evidence neither demonstrates a reduction in cancer specific, nor a reduction in all cause mortality from screening mammography. When less rigorous trials are added to the analysis there is a reduction in mortality due to breast cancer of 0.05% (a decrease of 1 in 2000 deaths from breast cancer over 10 years or a relative decrease of 15% from breast cancer). Screening over 10 years results in a 30% increase in rates of over-diagnosis and over-treatment (3 to 14 per 1000) and more than half will have at least one falsely positive test. This has resulted in the view that it is not clear whether mammography screening does more good or harm. Cochrane states that, due to recent improvements in breast cancer treatment, and the risks of false positives from breast cancer screening leading to unnecessary treatment, "it therefore no longer seems beneficial to attend for breast cancer screening" at any age. Whether MRI as a screening method has greater harms or benefits when compared to standard mammography is not known.
The diagnosis of urachal cancer can be difficult and usually requires a multidisciplinary approach. A calcification in the midline can be detected in some patients in abdominal imaging studies. A cystoscopy is helpful in most cases. For diagnosis evaluation of a tissue biopsy is needed, which is usually obtained by transurethral resection (TURBT). Measurement of serum concentrations of CEA, CA19-9 and CA125 can be helpful in monitoring urachal cancer
Anal Pap smears similar to those used in cervical cancer screening have been studied for early detection of anal cancer in high-risk individuals. In 2011, the HIV clinic implemented a program to enhance access to anal cancer screening for HIV-positive men. Nurse practitioners perform anal Papanicolaou screening, and men with abnormal results receive further evaluation with high-resolution anoscopy. The program has helped identify many precancerous growths, allowing them to be safely removed.
Historically, the combination of external-beam radiation therapy (EBRT) has been the most common treatment for vaginal cancer. In early stages of vaginal cancer, surgery also has some benefit. This management and treatment is less effective for those with advanced stages of cancer but works well in early stages with high rates of cure. Advanced vaginal cancer only has a 5-year survival rates of 52.2%, 42.5% and 20.5% for patients with stage II, III and IVa disease. Newer treatments for advanced stages of ovarian have been developed. These utilize concurrent carboplatin plus paclitaxel, EBRT and high-dose-rate interstitial brachytherapy (HDR-ISBT).
When the chance of surgical removal of all cancerous tissue is very low or when the surgery has a chance of damaging the bladder, vagina or bowel, radiation therapy is used. When a tumor is less than 4 cm in diameter, radiation therapy provides excellent results. In these instances, the 5-year survival rate is greater than 80%. Treatments are individualized due to the rarity of vaginal cancer studies.
Tumor size staging and node involvement staging can be combined into a single clinical staging number.