Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Diagnostic workup varies by the stone type, but in general:
- Clinical history and physical examination
- Imaging studies
- Some stone types (mainly those with substantial calcium content) can be detected on X-ray and CT scan
- Many stone types can be detected by ultrasound
- Factors contributing to stone formation (as in #Etiology) are often tested:
- Laboratory testing can give levels of relevant substances in blood or urine
- Some stones can be directly recovered (at surgery, or when they leave the body spontaneously) and sent to a laboratory for analysis of content
Modification of predisposing factors can sometimes slow or reverse stone formation. Treatment varies by stone type, but, in general:
- Medication
- Surgery (lithotomy)
- Antibiotics and/or surgery for infections
- Medication
- Extracorporeal shock wave lithotripsy (ESWL) for removal of calculi
In people with a history of stones, those who are less than 50 years of age and are presenting with the symptoms of stones without any concerning signs do not require helical CT scan imaging. A CT scan is also not typically recommended in children.
Otherwise a noncontrast helical CT scan with sections is the diagnostic modality of choice in the radiographic evaluation of suspected nephrolithiasis. All stones are detectable on CT scans except very rare stones composed of certain drug residues in the urine, such as from indinavir. Calcium-containing stones are relatively radiodense, and they can often be detected by a traditional radiograph of the abdomen that includes the kidneys, ureters, and bladder (KUB film). Some 60% of all renal stones are radiopaque. In general, calcium phosphate stones have the greatest density, followed by calcium oxalate and magnesium ammonium phosphate stones. Cystine calculi are only faintly radiodense, while uric acid stones are usually entirely radiolucent.
Where a CT scan is unavailable, an intravenous pyelogram may be performed to help confirm the diagnosis of urolithiasis. This involves intravenous injection of a contrast agent followed by a KUB film. Uroliths present in the kidneys, ureters or bladder may be better defined by the use of this contrast agent. Stones can also be detected by a retrograde pyelogram, where a similar contrast agent is injected directly into the distal ostium of the ureter (where the ureter terminates as it enters the bladder).
Renal ultrasonography can sometimes be useful, as it gives details about the presence of hydronephrosis, suggesting the stone is blocking the outflow of urine. Radiolucent stones, which do not appear on KUB, may show up on ultrasound imaging studies. Other advantages of renal ultrasonography include its low cost and absence of radiation exposure. Ultrasound imaging is useful for detecting stones in situations where X-rays or CT scans are discouraged, such as in children or pregnant women. Despite these advantages, renal ultrasonography in 2009 was not considered a substitute for noncontrast helical CT scan in the initial diagnostic evaluation of urolithiasis. The main reason for this is that compared with CT, renal ultrasonography more often fails to detect small stones (especially ureteral stones), as well as other serious disorders that could be causing the symptoms. A 2014 study confirmed that ultrasonography rather than CT as an initial diagnostic test results in less radiation exposure and did not find any significant complications.
Laboratory investigations typically carried out include:
- microscopic examination of the urine, which may show red blood cells, bacteria, leukocytes, urinary casts and crystals;
- urine culture to identify any infecting organisms present in the urinary tract and sensitivity to determine the susceptibility of these organisms to specific antibiotics;
- complete blood count, looking for neutrophilia (increased neutrophil granulocyte count) suggestive of bacterial infection, as seen in the setting of struvite stones;
- renal function tests to look for abnormally high blood calcium blood levels (hypercalcemia);
- 24 hour urine collection to measure total daily urinary volume, magnesium, sodium, uric acid, calcium, citrate, oxalate and phosphate;
- collection of stones (by urinating through a StoneScreen kidney stone collection cup or a simple tea strainer) is useful. Chemical analysis of collected stones can establish their composition, which in turn can help to guide future preventive and therapeutic management.
Diagnosis is usually made by characteristic history and physical examination. Diagnosis can be confirmed by x-ray (80% of salivary gland calculi are visible on x-ray), by sialogram, or by ultrasound.
Diagnosis is typically confirmed by ultrasound. Complications may be detected on blood tests.
A positive Murphy's sign is a common finding on physical examination during a gallbladder attack.
In simple cases of obstruction, where there are no complications, a variety of non-surgical and surgical techniques are used to remove the enterolith. These include crushing the enterolith and milking it back to the stomach or forward to the colon, surgical removal via an uninvolved segment of the gastrointestinal tract, and resection of the involved segment.
In humans, enteroliths are rare and may be difficult to distinguish from gall stones. Their chemical composition is diverse, and rarely can a nidus be found. A differential diagnosis of an enterolith requires the enterolith, a normal gallbladder, and a diverticulum.
An enterolith typically forms within a diverticulum. An enterolith formed in a Meckel's diverticulum sometimes is known as a Meckel's enterolith. Improper use of magnesium oxide as a "long-term" laxative has been reported to cause enteroliths and/or medication bezoars.
Most enteroliths are not apparent and cause no complications. However, any complications that do occur are likely to be severe. Of these, bowel obstruction is most common, followed by ileus and perforation. Bowel obstruction and ileus typically occur when a large enterolith is expelled from a diverticulum into the lumen. Perforation typically occurs within the diverticulum.
Most human enteroliths are radiolucent on plain X-rays. They sometimes can be visualized on CT scans without contrast; presence of contrast in the lumen may reveal the enterolith as a void. Most often, they are visualized using ultrasound.
Although recent surveys of enterolith composition are lacking, one early review notes struvite (as in equines), calcium phosphate, and calcium carbonate and reports choleic acid. Deoxycholic acid and cholic acid have also been reported.
Some current treatment options are:
- Non-invasive:
- For small stones, hydration, moist heat therapy, NSAIDs (nonsteroidal anti-inflammatory drugs) occasionally, and having the patient take any food or beverage that is bitter and/or sour. Sucking on citrus fruits, such as a lemon or orange, may increase salivation and promote spontaneous expulsion of the stone.
- Some stones may be massaged out by a specialist.
- Shock wave therapy (Extracorporeal shock wave lithotripsy).
- Minimally invasive:
- Sialendoscopy
- Surgical:
- An ENT or oral/maxillofacial surgeon may cannulate the duct to remove the stone (sialectomy).
- A surgeon may make a small incision near the stone to remove it.
- In some cases when stones continually reoccur the offending salivary duct is removed.
- Supporting treatment:
- To prevent infection while the stone is lodged in the duct, antibiotics are sometimes used.
If left untreated, complications may arise including abscess formation, peritonitis, sepsis, and damage to the urinary tract by fibrosis and granuloma formation. It is recommended, as a first step, to drain the lesion with ultrasound or CT guidance. If a patient has an underlying obstructive problem it needs to be addressed according to its cause.
Cholecystectomy (gallbladder removal) has a 99% chance of eliminating the recurrence of cholelithiasis. Surgery is only indicated in symptomatic patients. The lack of a gallbladder may have no negative consequences in many people. However, there is a portion of the population—between 10 and 15%—who develop a condition called postcholecystectomy syndrome which may cause gastrointestinal distress and persistent pain in the upper-right abdomen, as well as a 10% risk of developing chronic diarrhea.
There are two surgical options for cholecystectomy:
- Open cholecystectomy is performed via an abdominal incision (laparotomy) below the lower right ribs. Recovery typically requires 3–5 days of hospitalization, with a return to normal diet a week after release and to normal activity several weeks after release.
- Laparoscopic cholecystectomy, introduced in the 1980s, is performed via three to four small puncture holes for a camera and instruments. Post-operative care typically includes a same-day release or a one night hospital stay, followed by a few days of home rest and pain medication. Laparoscopic cholecystectomy patients can, in general, resume normal diet and light activity a week after release, with some decreased energy level and minor residual pain continuing for a month or two. Studies have shown that this procedure is as effective as the more invasive open cholecystectomy, provided the stones are accurately located by cholangiogram prior to the procedure so that they can all be removed.
A urinoma is the result of a breach of the integrity of the pelvis or calices of the kidney or of the ureter. The urine collection in the perirenal fat causes an inflammatory response with lipolysis resulting in its fibrous encapsulation. Urinomas are usually caused by blunt trauma to the kidneys. While extravasation of urine is common as a result a severe blunt trauma (2-18%), spontaneous resolution is typical, and urinoma formation develops only in few instances. Less common causes of urinoma development are ureteral obstructions due to cancer, calculus formation, pregnancy, or congenital causes.
Urinomas tend to develop gradually. Symptoms depend on size and location of the lesion. Eventually local pain and pressure symptoms may become apparent. Biochemical testing of renal function is indicated. Imaging (IVP, ultrasonography, CT scan) will identify the lesion. Image-guided percutaneous needle aspiration is both diagnostic and therapeutic.
They are removed under general anaesthesia . Most can be removed through anterior nares . Large ones need to be broken into pieces before removal . Some particularly hard and irregular ones may require lateral rhinotomy .
A rhinolith is a calculus present in the nasal cavity. The word is derived from the roots "" and "", literally meaning "nose stone". It is an uncommon medical phenomenon, not to be confused with dried nasal mucus. A rhinolith usually forms around the nucleus of a small exogenous foreign body, blood clot or secretion by slow deposition of calcium and magnesium salts. Over a period of time, they grow into large irregular masses that fill the nasal cavity. They may cause pressure necrosis of the nasal septum or lateral wall of nose. Rhinoliths can cause nasal obstruction, epistaxis, headache, sinusitis and epiphora. They can be diagnosed from the history with unilateral foul smelling blood stained nasal discharge or by anterior rhinoscopy. On probing probe can be passed around all its corners. In both CT and MRI rhinolith will appear like a radiopaque irregular material. Small rhinoliths can be removed by foreign body hook. Whereas large rhinoliths can be removed either by crushing with luc's forceps or by Moore's lateral rhinotomy approach.
A salivary gland fistula (plural "fistulae") is a fistula (i.e. an abnormal, epithelial-lined tract) involving a salivary gland or duct.
Salivary gland fistulae are almost always related to the parotid gland or duct, although the submandibular gland is rarely the origin.
The fistula can communicate with the mouth (usually causing no symptoms), the paranasal sinuses (giving rhinorrhea) or the facial skin (causing saliva to drain onto the skin).
The usual cause is trauma, however salivary fistula can occur as a complication of surgery, or if the duct becomes obstructed with a calculus.
Most parotid fistulae heal by themselves within a few weeks.
Periodontal abscesses may be difficult to distinguish from periapical abscesses. Since the management of a periodontal abscess is different from a periapical abscess, this differentiation is important to make (see Dental abscess#Diagnostic approach) For example, root canal therapy is unnecessary and has no impact on pain in a periodontal abscess.
Low-volume, runny/fluid semen (oligospermia) or no semen at all (dry ejaculation/aspermia) are a logical consequence of an obstruction downstream of the seminal vesicles which contribute most to the volume of the semen. Usually, men will be able to observe a runny/fluid, low-volume semen by themselves during masturbation. Since the seminal vesicles contain a viscous, alkaline fluid rich in fructose, a chemical analysis of the semen of affected men will result in a low concentration of fructose and a low pH. A microscopic semen analysis will reveal aspermia/azoospermia.
In contrast, if both vasa deferentia are obstructed (which may be the result of intended sterilization), a semen analysis will also reveal aspermia/azoospermia, but an almost normal volume of the semen, since the efflux of the seminal vesicles is not hindered. This is because approx. 80% of the volume of the semen is the gel-like fluid originating from the seminal vesicles whereas the fraction from the testicles / epididymis, which contains the spermatozoa accounts for only 5–10% of the volume of the semen. In addition, if an obstruction of the vasa deferentia is the cause for the azoospermia, the concentration of fructose in the semen will also be normal, since the fructose comes primarily from the fluid stored in the seminal vesicles. If the seminal-vesicles contain spermatozoa, but the semen does not, the obstruction must be downstream of the seminal vesicles and the ejaculatory ducts are very likely to be obstructed, provided that other causes for a dry ejaculation/aspermia such as an retrograde ejaculation are ruled out.
Attempts are sometimes made to diagnose an ejaculatory duct obstruction by means of medical imaging, e.g. transrectal ultrasound or MRI, or by transrectal needle-aspiration of the seminal vesicles. However transrectal ultrasound has a relatively low sensitivity of approx. 50% and thus is only a tool to rule-out cysts in the region of the orifices but is not sufficient to rule out an obstruction of the ejaculatory ducts due to other causes. In approx. 50% of cases of unexplained low-volume azoospermia MRI and TRUS do not reveal any pathological findings, because it is difficult to see alterations in a narrowed, scarred duct with these methods. Due to the blockage of ejaculatory ducts, enlarged seminal vesicles are frequently seen in patients with ejaculatory duct obstructions. However, this is again neither a proof of an obstruction nor do normal-sized seminal vesicles rule-out an obstruction of the ejaculatory ducts. Since ejaculatory duct obstruction is a relatively rare cause of infertility, this possibility may be unfamiliar to some physicians, even some urologists.
Extravasation of urine due to blunt renal trauma or ureteral obstruction can lead to the formation of an urinoma.
Upon delivery, the exposed bladder is irrigated and a non-adherent film is placed to prevent as much contact with the external environment as possible. In the event the child was not born at a medical center with an appropriate exstrophy support team then transfer will likely follow. Upon transfer, or for those infants born at a medical center able to care for bladder exstrophy, imaging may take place in the first few hours of life prior to the child undergoing surgery.
Primary (immediate) closure is indicated only in those patients with a bladder of appropriate size, elasticity, and contractility as those patients are most likely to develop a bladder of adequate capacity after early surgical intervention.
Conditions that are absolute contraindications despite bladder adequacy include duplication of the penis or scrotum and significant bilateral hydronephrosis.
Extravasation of urine refers to the condition where an interruption of the urethra leads to a collection of urine in other cavities, such as the scrotum or the penis in males. It can be associated with a calculus.
Prevention of pericoronitis can be achieved by removing impacted third molars before they erupt into the mouth, or through preemptive operculectomy. A treatment controversy exists about the necessity and timing of the removal of asymptomatic, disease-free impacted wisdom teeth which prevents pericoronitis. Proponents of early extraction cite the cumulative risk for extraction over time, the high probability that wisdom teeth will eventually decay or develop gum disease and costs of monitoring to retained wisdom teeth. Advocates for retaining wisdom teeth cite the risk and costs of unnecessary operations and the ability to monitor the disease through clinical exam and radiographs.
An examination by the dentist or dental hygienist should be sufficient to rule out the issues such as malnutrition and puberty. Additional corresponding diagnosis tests to certain potential disease may be required. This includes oral glucose tolerance test for diabetes mellitus, blood studies, human gonadotrophin levels for pregnancy, and X-rays for teeth and jaw bones.
In order to determine the periodontal health of a patient, the dentist or dental hygienist records the sulcular depths of the gingiva and observes any bleeding on probing. This is often accomplished with the use of a periodontal probe. Alternatively, dental floss may also be used to assess the Gingival bleeding index. It is used as an initial evaluation on patient's periodontal health especially to measure gingivitis. The number of bleeding sites is used to calculate the gingival bleeding score.
Peer-reviewed dental literature thoroughly establishes that bleeding on probing is a poor positive predictor of periodontal disease, but conversely lack of bleeding is a very strong negative predictor. The clinical interpretation of this research is that while BOP presence may not indicate periodontal disease, continued absence of BOP is a strong predictor (approximately 98%) of continued periodontal health.
In a small retrospective study of 25 pregnancies five factors were found to be strongly associated with a prenatal diagnosis of bladder exstrophy:
- Inability to visualize the bladder on ultrasound
- A lower abdominal bulge
- A small penis with anteriorly displaced scrotum
- A low set umbilical insertion
- Abnormal widening of the iliac crests
While a diagnosis of bladder exstrophy was made retrospectively in a majority of pregnancies, in only three cases was a prenatal diagnosis made.
An important factor is whether the involved tooth is to be extracted or retained. Although the pulp is usually still vital, a history of recurrent periodontal abscesses and significantly compromised periodontal support indicate that the prognosis for the tooth is poor and it should be removed.
The initial management of a periodontal abscess involves pain relief and control of the infection. The pus needs to be drained, which helps both of these aims. If the tooth is to be removed, drainage will occur via the socket. Otherwise, if pus is already discharging from the periodontal pocket, this can be encouraged by gentle irrigation and scaling of the pocket whilst massaging the soft tissues. If this does not work, incision and drainage is required, as described in Dental abscess#Treatment.
Antibiotics are of secondary importance to drainage, which if satisfactory renders antibiotics unnecessary. Antibiotics are generally reserved for severe infections, in which there is facial swelling, systemic upset and elevated temperature. Since periodontal abscesses frequently involve anaerobic bacteria, oral antibiotics such as amoxicillin, clindamycin (in penicillin allergy or pregnancy) and/or metronidazole are given. Ideally, the choice of antibiotic is dictated by the results of microbiological culture and sensitivity testing of a sample of the pus aspirated at the start of any treatment, but this rarely occurs outside the hospital setting.
Other measures that are taken during management of the acute phase might include reducing the height of the tooth with a dental drill, so it no longer contacts the opposing tooth when biting down; and regular use of hot salt water mouth washes (antiseptic and encourages further drainage of the infection).
The management following the acute phase involves removing any residual infection, and correcting the factors that lead to the formation of the periodontal abscess. Usually, this will be therapy for periodontal disease, such as oral hygiene instruction and periodontal scaling.
There are two main methods of detecting dental plaque in the oral cavity: through the application of a disclosing gel or tablet, and/or visually through observation. Plaque detection is usually detected clinically by plaque disclosing agents. Disclosing agents contain dye which turns bright red to indicate plaque build-up.
It is important for an individual to be aware of what to look for when doing a self-assessment for dental plaque. It is important to be aware that everyone has dental plaque, however, the severity of the build-up and the consequences of not removing the plaque can vary.