Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The calcific deposits are visible on X-ray as discrete lumps or cloudy areas. The deposits look cloudy on X-ray if they are in the process of reabsorption, and this is also when they cause the most pain. The deposits are crystalline when in their resting phase and like toothpaste in the reabsorptive phase. However, poor correlation exists between the appearance of a calcific deposit on plain X-rays and its consistency on needling. Ultrasound is also useful to depict calcific deposits and closely correlates with the stage of disease.
In those with calcific tendinitis of the shoulder high energy extracorporeal shock-wave therapy (which uses sound waves) can be useful. It is not useful in other types of tendinitis. This procedure may be known as .
X-rays may help visualize bone spurs, acromial anatomy and arthritis. Further, calcification in the subacromial space and rotator cuff may be revealed. Osteoarthritis of the acromioclavicular (AC) joint may co-exist and is usually demonstrated on radiographs.
MRI imagining can reveal fluid accumulation in the bursa and assess adjacent structures. In chronic cases caused by impingement tendinosis and tears in the rotator cuff may be revealed. At US, an abnormal bursa may show (1) fluid distension, (2) synovial proliferation, and/or (3) thickening of the bursal walls. In any case, the magnitude of pathological findings does not correlate with the magnitude of the symptoms.
Ultrasound imaging can be used to evaluate tissue strain, as well as other mechanical properties.
Ultrasound-based techniques are becoming more popular because of its affordability, safety, and speed. Ultrasound can be used for imaging tissues, and the sound waves can also provide information about the mechanical state of the tissue.
Increased water content and disorganized collagen matrix in tendon lesions may be detected by ultrasonography or magnetic resonance imaging.
Magnetic resonance imaging (MRI) and ultrasound are comparable in efficacy and helpful in diagnosis although both have a false positive rate of 15 - 20%. MRI can reliably detect most full-thickness tears although very small pinpoint tears may be missed. In such situations, an MRI combined with an injection of contrast material, an MR-arthrogram, may help to confirm the diagnosis. It should be realized that a normal MRI cannot fully rule out a small tear (a false negative) while partial-thickness tears are not as reliably detected. While MRI is sensitive in identifying tendon degeneration (tendinopathy), it may not reliably distinguish between a degenerative tendon and a partially torn tendon. Again, magnetic resonance arthrography can improve the differentiation. An overall sensitivity of 91% (9% false negative rate) has been reported indicating that magnetic resonance arthrography is reliable in the detection of partial-thickness rotator cuff tears. However, its routine use is not advised, since it involves entering the joint with a needle with potential risk of infection. Consequently, the test is reserved for cases in which the diagnosis remains unclear.
In patients with bursitis who have rheumatoid arthritis, short term improvements are not taken as a sign of resolution and may require long term treatment to ensure recurrence is minimized. Joint contracture of the shoulder has also been found to be at a higher incidence in type two diabetics, which may lead to frozen shoulder (Donatelli, 2004).
X-rays can confirm and distinguish possibilities of existing causes of pain that are unrelated to tennis elbow, such as fracture or arthritis. Rarely, calcification can be found where the extensor muscles attach to the lateral epicondyle. Medical ultrasonography and magnetic resonance imaging (MRI) are other valuable tools for diagnosis but are frequently avoided due to the high cost. MRI screening can confirm excess fluid and swelling in the affected region in the elbow, such as the connecting point between the forearm bone and the extensor carpi radialis brevis.
Musculoskeletal ultrasound has been advocated by experienced practitioners, avoiding the radiation of X-ray and the expense of MRI while demonstrating comparable accuracy to MRI for identifying and measuring the size of full-thickness and partial-thickness rotator cuff tears. This modality can also reveal the presence of other conditions that may mimic rotator cuff tear at clinical examination, including tendinosis, calcific tendinitis, subacromial subdeltoid bursitis, greater tuberosity fracture, and adhesive capsulitis. However, MRI provides more information about adjacent structures in the shoulder such as the capsule, glenoid labrum muscles and bone and these factors should be considered in each case when selecting the appropriate study.
The diagnosis of patellofemoral pain syndrome is made by ruling out patellar tendinitis, prepatellar bursitis, plica syndrome, Sinding-Larsen and Johansson syndrome, and Osgood–Schlatter disease.
Patients can be observed standing and walking to determine patellar alignment. The Q-angle, lateral hypermobility, and J-sign are commonly used determined to determine patellar maltracking. The patellofemoral glide, tilt, and grind tests (Clarke's sign), when performed, can provide strong evidence for PFPS. Lastly, lateral instability can be assessed via the patellar apprehension test, which is deemed positive when there is pain or discomfort associated with lateral translation of the patella.
If severe pain persists after the first 24hours it is recommended that an individual consult with a professional who can make a diagnosis and implement a treatment plan so the patient can return to everyday activities (Flegel, 2004). These are some of the tools that a professional can use to help make a full diagnosis;
Nerve conduction studies may also be used to localize nerve dysfunction ("e.g.", carpal tunnel syndrome), assess severity, and help with prognosis.
Electrodiagnosis also helps differentiate between myopathy and neuropathy.
Ultimately, the best method of imaging soft tissue is magnetic resonance imaging (MRI), though it is cost-prohibitive and carries a high false positive rate.
Achilles tendinitis is mainly diagnosed by a medical history taking and a physical examination. Projectional radiography shows calcification deposits within the tendon at its calcaneal insertion in approximately 60 percent of cases. Magnetic resonance imaging (MRI) can determine the extent of tendon degeneration, and may show differential diagnoses such as bursitis.
Curb as a visible blemish is an easy diagnosis, as swelling in the distal lateral hock region is, by definition, curb. However, ultrasound is an essential tool in the diagnosis and in establishing a treatment plan. Diagnostic anesthesia (local or nerve blocks) can be helpful, but is not perfectly specific in this area.
To diagnose tennis elbow, physicians perform a battery of tests in which they place pressure on the affected area while asking the patient to move the elbow, wrist, and fingers. Diagnosis is made by clinical signs and symptoms that are discrete and characteristic. For example, when the elbow fully extended, the patient feels points of tenderness over the affected point on the elbow. The most common location of tenderness is at the origin of the extensor carpi radialis brevis muscle from the lateral epicondyle (extensor carpi radialis brevis origin), 1cm distal and slightly anterior to the lateral epicondyle. There is also pain with passive wrist flexion and resistive wrist extension (Cozen's test).
Treatment generally consists of rest, followed by a controlled exercise program, based on clinical and ultrasound findings. Many other treatments related to tendon and ligament injuries have been tried. (See tendinitis)
Percutaneous ultrasonic tenotomy provided continued pain relief and functional improvement for recalcitrant tennis elbow at a 3-year follow-up.
Diagnosis of tendinitis and bursitis begins with a medical history and physical examination. X rays do not show tendons or the bursae but may be helpful in ruling out bony abnormalities or arthritis. The doctor may remove and test fluid from the inflamed area to rule out infection.
Ultrasound scans are frequently used to confirm a suspected tendinitis or bursitis as well as rule out a tear in the rotator cuff muscles.
Impingement syndrome may be confirmed when injection of a small amount of anesthetic (lidocaine hydrochloride) into the space under the acromion relieves pain.
The best diagnosis for a SLAP tear is a clinical exam
followed by an MRI combined with a contrast agent
Thermography, or thermal imaging, measures the heat gradient of skin by detection of infrared radiation. Because heat is a cardinal sign of inflammation, thermal imaging can be used to detect inflammation that may be the cause of lameness, and at times discover a subclinical injury. When used, horses must be placed in an area free of sunlight exposure, drafts, or other sources of outside heat, and hair length should be uniform in the area imaged. Benefits include non-invasiveness and the potential for early identification of injury, and detection of early contralateral limb injury in the case of orthopedic patients.
In horses tendinitis is called a bowed tendon from the appearance of the affected tendon after it heals without treatment. Mesenchymal stem cells, derived from a horse's bone marrow or fat, are currently being used for tendon repair in horses.
Steroid injections are helpful in the short term (first approximately 4 weeks) however, their long term effectiveness is not known, and quality of evidence for its use remains poor and controversial.
Other, more conservative and non-surgical, treatment options available for the management and treatment of tendinopathy include: rest, ice, massage therapy, eccentric exercise, NSAIDs, ultrasound therapy, LIPUS, electrotherapy, taping, sclerosing injections, blood injection, glyceryl trinitrate patches, and (ESWT) extracorporeal shockwave therapy. Studies with a rat model of fatigue-damaged tendons suggested that delaying exercise until after the initial inflammatory stage of repair could promote remodelling more rapidly. There is insufficient evidence on the routine use of injection therapies (Autologous blood, Platelet-rich plasma, Deproteinised haemodialysate, Aprotinin, Polysulphated glycosaminoglycan, Corticosteroid, Skin derived fibroblasts etc.) for treating Achilles tendinopathy. As of 2014 there was insufficient evidence to support the use of platelet-rich therapies for treating musculoskeletal soft tissue injuries such as ligament, muscle and tendon tears and tendinopathies.
Tendon injury and resulting tendinopathy are responsible for up to 30% of consultations to sports doctors and other musculoskeletal health providers. Tendinopathy is most often seen in tendons of athletes either before or after an injury but is becoming more common in non-athletes and sedentary populations. For example, the majority of patients with Achilles tendinopathy in a general population-based study did not associate their condition with a sporting activity. In another study the population incidence of Achilles tendinopathy increased sixfold from 1979-1986 to 1987-1994. The incidence of rotator cuff tendinopathy ranges from 0.3% to 5.5% and annual prevalence from 0.5% to 7.4%.
Magnetic Resonance Imaging (MRI) produces a 3-dimensional image that allows for exceptional evaluation of soft tissue structures, as well as the detection of boney change and the presence of excessive fluid accumulation associated with inflammation. Like CT, an MRI image may be viewed in various planes of orientation, improving visualization of anatomic structures and any associated pathologic change. MRI is considered the gold standard for diagnosing soft tissue injury within the foot. While it can provide a definitive diagnosis in cases where other imaging modalities have failed, it does have several limitations. Available magnet size restricts imaging to the level of the stifle or elbow, or below. MRI takes a significant amount of time acquire an image, which translates to long anesthesia times and therefore reduces the size of the area that may be imaged in a single session. The area thought to be associated with lameness must be placed in the MRI. MRI is therefore inappropriate for any lameness that can not be localized to a specific region of the limb. Additionally, MRI has limited availability and high cost compared to the other imaging modalities.
Horses may undergo standing MRI, where the horse is sedated and imaged with a low-field magnet (0.27 Tesla), or it may be placed in a high-field magnet (1.5 or 3 Tesla) while under general anesthesia. Low-field magnets produce less resolution and the subtle swaying of the standing horse leads to motion artifact (blurring of the image), especially in the case of the knee or hock, leading to reduced image quality. However, standing MRI tends to be cheaper, and it eliminates the risks of general anesthesia, such as further damage to the injured area or additional injury that may occur during anesthetic recovery.
As of July 2000, hypermobility was diagnosed using the Brighton criteria. The Brighton criteria do not replace the Beighton score but instead use the previous score in conjunction with other symptoms and criteria. HMS is diagnosed in the presence of either two major criteria, one major and two minor criteria, or four minor criteria. The criteria are:
Treatment of tendon injuries is largely conservative. Use of non-steroidal anti-inflammatory drugs (NSAIDs), rest, and gradual return to exercise is a common therapy. Resting assists in the prevention of further damage to the tendon. Ice, compression and elevation are also frequently recommended. Physical therapy, occupational therapy, orthotics or braces may also be useful. Initial recovery is typically within 2 to 3 days and full recovery is within 3 to 6 months. Tendinosis occurs as the acute phase of healing has ended (6–8 weeks) but has left the area insufficiently healed. Treatment of tendinitis helps reduce some of the risks of developing tendinosis, which takes longer to heal.
Steroid injections have not been shown to have long term benefits but have been shown to be more effective than NSAIDs in the short term.
In chronic tendinitis or tendonosis laser therapy has been found to be better than conservative treatment at reducing pain; however, no other outcomes were assessed.
Both prolotherapy and PRP injections are being used more frequently with good clinical short and long term outcomes in tendonosis - research has been only slightly positive for these treatment modalities due to the poor design of many of the completed studies.