Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
In a case of an adolescent with rear foot pain, the physical exam will reveal that the foot movement is limited. This is both because there is a physical blockade to movement and because the brain will 'turn on' the muscles around the area to stop the joint moving toward the painful 'zone'. X-rays will usually be ordered and, in general, if there is enough toughness to the tissue bridge that pain has begun – there will usually be enough bone laid down to show up in an x-ray.
More high-tech investigations such as CT scan will be required if proceeding to surgery. If the bridge appears to be mostly fibrous tissue, an MRI would be the preferred modality to use.
Surgical correction is recommended when a constriction ring results in a limb contour deformity, with or without lymphedema.
The goal of non-surgical treatment of tarsal coalition is to relieve the symptoms by reducing the movement of the affected joint. This might include non-steroidal anti-inflammatory drugs (NSAIDs), steroidal anti-inflammatory injection, stabilizing orthotics or immobilization via a leg cast. At times, short term immobilization followed by long term orthotic use may be sufficient to keep the area free of pain.
Surgery is very commonly required. The type and complexity of the surgery will depend on the location of the coalition. Essentially, there are two types of surgery. Wherever possible, the bar will be removed to restore normal motion between the two bones. If this is not possible, it may be necessary to fuse the affected joints together by using screws to connect them solidly. Cutting away the coalition is more likely to succeed the younger the patient. With age comes extra wear in the affected and adjacent joints that makes treatment more difficult.
At the beginning of the surgery a tourniquet will be applied to the limb. A tourniquet compresses and control the arterial and venous circulation for about 2 hours. The constriction band must be dissected very carefully to avoid damaging the underlying neurovasculature. When the constriction band is excised, there will be a direct closure. This allows the fatty tissue to naturally reposition itself under the skin.
“With complete circumferential constriction bands, it is recommended that a two-stage correction approach be used. At the first operation, one-half of the circumference is excised and the other one-half can be excised after three to six months. This will avoid any problems to the distal circulation in the limb, which may already be compromised. Lymphedema, when present, will significantly improve within a few weeks of the first surgery.”
For the direct closure of the defect after dissecting a constriction band there are two different techniques:
1. Triangular flaps; For this technique the circumference between the two borders must be measured. Depending on the difference the number of triangular flaps can be decided. With a triangular flap you can create more skin.
2. Z/W-plasty; “Z-plasty is a plastic surgery technique that is used to improve the functional and cosmetic appearance of scars. It can elongate a contracted scar or rotate the scar tension line. The middle line of the Z-shaped incision (the central element) is made along the line of greatest tension or contraction, and triangular flaps are raised on opposite sides of the two ends and then transposed.”
In rare cases, if diagnosed in utero, fetal surgery may be considered to save a limb that is in danger of amputation or other deformity. This operation has been successfully performed on fetuses as young as 22 weeks. The Melbourne's Monash Medical Centre in Australia, as well as multiple facilities in the United States of America, have performed successful amniotic band release surgery.
Radioulnar synostosis is one of the more common failures of separation of parts of the upper limb. There are two general types: one is characterized by fusion of the radius and ulna at their proximal borders and the other is fused distal to the proximal radial epiphysis. Most cases are sporadic, congenital (due to a defect in longitudinal segmentation at the 7th week of development) and less often post-traumatic, bilateral in 60%, and more common in males. Familial cases in association with autosomal dominant transmission appear to be concentrated in certain geographic regions, such as Sicily.
The condition frequently is not noted until late childhood, as function may be normal, especially in unilateral cases. Increased wrist motion may compensate for the absent forearm motion. It has been suggested that individuals whose forearms are fixed in greater amounts of pronation (over 60 degrees) face more problems with function than those with around 20 degrees of fixation. Pain is generally not a problem, unless radial head dislocation should occur.
Most examples of radioulnar synostosis are isolated (non-syndromic). Syndromes that may be accompanied by radioulnar synostosis include X chromosome polyploidy (e.g., XXXY) and other chromosome disorders (e.g., 4p- syndrome, Williams syndrome), acrofacial dysostosis, Antley–Bixler syndrome, genitopatellar syndrome, Greig cephalopolysyndactyly syndrome, hereditary multiple osteochondromas (hereditary multiple exostoses), limb-body wall complex, and Nievergelt syndrome.
Craniosynostosis (from cranio, cranium; + syn, together; + ostosis relating to bone) is a condition in which one or more of the fibrous sutures in an infant skull prematurely fuses by turning into bone (ossification). Craniosynostosis has following kinds: scaphocephaly, trigonocephaly, plagiocephaly, anterior plagiocephaly, posterior plagiocephaly, brachycephaly, oxycephaly, pansynostosis.
Synostosis (plural: synostoses) is fusion of two bones. It can be normal in puberty, fusion of the epiphysis, or abnormal. When synostosis is abnormal it is a type of dysostosis.
Examples of synostoses include:
- craniosynostosis – an abnormal fusion of two or more cranial bones;
- radioulnar synostosis – the abnormal fusion of the radius and ulna bones of the forearm;
- tarsal coalition – a failure to separately form all seven bones of the tarsus (the hind part of the foot) resulting in an amalgamation of two bones; and
- syndactyly – the abnormal fusion of neighboring digits.
Synostosis within joints can cause ankylosis.
Most flexible flat feet are asymptomatic, and do not cause pain. In these cases, there is usually no cause for concern. Flat feet were formerly a physical-health reason for service-rejection in many militaries. However, three military studies on asymptomatic adults (see section below), suggest that persons with asymptomatic flat feet are at least as tolerant of foot stress as the population with various grades of arch. Asymptomatic flat feet are no longer a service disqualification in the U.S. military.
In a study performed to analyze the activation of the tibialis posterior muscle in adults with pes planus, it was noted that the tendon of this muscle may be dysfunctional and lead to disabling weightbearing symptoms associated with acquired flat foot deformity. The results of the study indicated that while barefoot, subjects activated additional lower-leg muscles to complete an exercise that resisted foot adduction. However, when the same subjects performed the exercise while wearing arch supporting orthotics and shoes, the tibialis posterior was selectively activated. Such discoveries suggest that the use of shoes with properly fitting, arch-supporting orthics will enhance selective activation of the tibialis posterior muscle thus, acting as an adequate treatment for the undesirable symptoms of pes planus.
Rigid flatfoot, a condition where the sole of the foot is rigidly flat even when a person is not standing, often indicates a significant problem in the bones of the affected feet, and can cause pain in about a quarter of those affected. Other flatfoot-related conditions, such as various forms of tarsal coalition (two or more bones in the midfoot or hindfoot abnormally joined) or an accessory navicular (extra bone on the inner side of the foot) should be treated promptly, usually by the very early teen years, before a child's bone structure firms up permanently as a young adult. Both tarsal coalition and an accessory navicular can be confirmed by X-ray. Rheumatoid arthritis can destroy tendons in the foot (or both feet) which can cause this condition, and untreated can result in deformity and early onset of osteoarthritis of the joint. Such a condition can cause severe pain and considerably reduced ability to walk, even with orthoses. Ankle fusion is usually recommended.
Treatment of flat feet may also be appropriate if there is associated foot or lower leg pain, or if the condition affects the knees or the lower back. Treatment may include using orthoses such as an arch support, foot gymnastics or other exercises as recommended by a podiatrist/orthotist or physical therapist. In cases of severe flat feet, orthoses should be used through a gradual process to lessen discomfort. Over several weeks, slightly more material is added to the orthosis to raise the arch. These small changes allow the foot structure to adjust gradually, as well as giving the patient time to acclimatise to the sensation of wearing orthoses. Once prescribed, orthoses are generally worn for the rest of the patient's life. In some cases, surgery can provide lasting relief, and even create an arch where none existed before; it should be considered a last resort, as it is usually very time consuming and costly.
Studies have shown children and adolescents with flat feet are a common occurrence. The human arch develops in infancy and early childhood as part of normal muscle, tendon, ligament and bone growth . Flat arches in children usually become high arches as the child progresses through adolescence and into adulthood. Since children are unlikely to suspect or identify flat feet on their own, it is important for adult caregivers to check on this themselves. Besides visual inspection, caregivers should notice when a child's gait is abnormal. Children who complain about calf muscle pains, arch pain, or any other pains around the foot area may be developing or have developed flat feet. Children with flat feet are at a higher risk of developing knee, hip, and back pain. A recent randomized controlled trial found no evidence for the efficacy of treatment of flat feet in children either from expensive prescribed orthotics i.e (shoe inserts) or less expensive over-the-counter orthotics. As a symptom itself, flat feet usually accompany genetic musculoskeletal conditions such as dyspraxia, ligamentous laxity or hypermobility.
In a high energy injury to the midfoot, such as a fall from a height or a motor vehicle accident, the diagnosis of a Lisfranc injury should, in theory at least, pose less of a challenge. There will be deformity of the midfoot and X-ray abnormalities should be obvious. Further, the nature of the injury will create heightened clinical suspicion and there may even be disruption of the overlying skin and compromise of the blood supply. Typical X-ray findings would include a gap between the base of the first and second toes. The diagnosis becomes more challenging in the case of low energy incidents, such as might occur with a twisting injury on the racquetball court, or when an American Football lineman is forced back upon a foot that is already in a fully plantar flexed position. Then, there may only be complaint of inability to bear weight and some mild swelling of the forefoot or midfoot. Bruising of the arch has been described as diagnostic in these circumstances but may well be absent. Typically, conventional radiography of the foot is utilized with standard non-weight bearing views, supplemented by weight bearing views which may demonstrate widening of the interval between the first and second toes, if the initial views fail to show abnormality. Unfortunately, radiographs in such circumstances have a sensitivity of 50% when non-weight bearing and 85% when weight bearing, meaning that they will appear normal in 15% of cases where a Lisfranc injury actually exists. In the case of apparently normal x-rays, if clinical suspicion remains, advanced imaging such as magnetic resonance imaging (MRI) or X-ray computed tomography (CT) is a logical next step.
Options include operative or non-operative treatment. If the dislocation is less than 2 mm, the fracture can be managed with casting for six weeks. The patient's injured limb cannot bear weight during this period. For severe Lisfranc injuries, open reduction with internal fixation (ORIF) and temporary screw or Kirschner wire (K-wire) fixation is the treatment of choice. The foot cannot be allowed to bear weight for a minimum of six weeks. Partial weight-bearing may then begin, with full weight bearing after an additional several weeks, depending on the specific injury. K-wires are typically removed after six weeks, before weight bearing, while screws are often removed after 12 weeks.
When a Lisfranc injury is characterized by significant displacement of the tarsometatarsal joint(s), nonoperative treatment often leads to severe loss of function and long-term disability secondary to chronic pain and sometimes to a planovalgus deformity. In cases with severe pain, loss of function, or progressive deformity that has failed to respond to nonoperative treatment, mid-tarsal and tarsometatarsal arthrodesis (operative fusion of the bones) may be indicated.
Because of the varying symptoms and signs of aortic dissection depending on the initial intimal tear and the extent of the dissection, the proper diagnosis is sometimes difficult to make.
While taking a good history from the individual may be strongly suggestive of an aortic dissection, the diagnosis cannot always be made by history and physical signs alone. Often, the diagnosis is made by visualization of the intimal flap on a diagnostic imaging test. Common tests used to diagnose an aortic dissection include a CT scan of the chest with iodinated contrast material and a transesophageal echocardiogram. The proximity of the aorta to the esophagus allows the use of higher-frequency ultrasound for better anatomical images. Other tests that may be used include an aortogram or magnetic resonance angiogram of the aorta. Each of these tests has pros and cons, and they do not have equal sensitivities and specificities in the diagnosis of aortic dissection.
In general, the imaging technique chosen is based on the pretest likelihood of the diagnosis, availability of the testing modality, patient stability, and the sensitivity and specificity of the test.
A measurement of blood D-dimer level may be useful in diagnostic evaluation. A level less than 500 ng/ml may be considered evidence against a diagnosis of aortic dissection, although this guideline is only applicable in cases deemed "low risk" and within 24 hours of symptom onset. The American Heart Association does not advise using this test in making the diagnosis, as evidence is still tentative.
Breast cancer screening refers to testing otherwise-healthy women for breast cancer in an attempt to achieve an earlier diagnosis under the assumption that early detection will improve outcomes. A number of screening tests have been employed including clinical and self breast exams, mammography, genetic screening, ultrasound, and magnetic resonance imaging.
A clinical or self breast exam involves feeling the breast for lumps or other abnormalities. Clinical breast exams are performed by health care providers, while self-breast exams are performed by the person themselves. Evidence does not support the effectiveness of either type of breast exam, as by the time a lump is large enough to be found it is likely to have been growing for several years and thus soon be large enough to be found without an exam. Mammographic screening for breast cancer uses X-rays to examine the breast for any uncharacteristic masses or lumps. During a screening, the breast is compressed and a technician takes photos from multiple angles. A general mammogram takes photos of the entire breast, while a diagnostic mammogram focuses on a specific lump or area of concern.
A number of national bodies recommend breast cancer screening. For the average woman, the U.S. Preventive Services Task Force recommends mammography every two years in women between the ages of 50 and 74, the Council of Europe recommends mammography between 50 and 69 with most programs using a 2-year frequency, and in Canada screening is recommended between the ages of 50 and 74 at a frequency of 2 to 3 years. These task force reports point out that in addition to unnecessary surgery and anxiety, the risks of more frequent mammograms include a small but significant increase in breast cancer induced by radiation.
The Cochrane collaboration (2013) states that the best quality evidence neither demonstrates a reduction in cancer specific, nor a reduction in all cause mortality from screening mammography. When less rigorous trials are added to the analysis there is a reduction in mortality due to breast cancer of 0.05% (a decrease of 1 in 2000 deaths from breast cancer over 10 years or a relative decrease of 15% from breast cancer). Screening over 10 years results in a 30% increase in rates of over-diagnosis and over-treatment (3 to 14 per 1000) and more than half will have at least one falsely positive test. This has resulted in the view that it is not clear whether mammography screening does more good or harm. Cochrane states that, due to recent improvements in breast cancer treatment, and the risks of false positives from breast cancer screening leading to unnecessary treatment, "it therefore no longer seems beneficial to attend for breast cancer screening" at any age. Whether MRI as a screening method has greater harms or benefits when compared to standard mammography is not known.
The majority of blast-related ocular injuries occur in soldiers who present with other life-threatening injuries that require immediate intervention. Current Combat Support Hospital (CSH) protocol requires the surgical stabilization of any life-threatening injuries, as well as hemodynamic stability, prior to initial eye evaluation and surgical repair. Therefore, initiation of emergency ophthalmic care often occurs hours after injury. Initial examination by a military ophthalmologist begins with gross examination of each eye and orbital. 73-82% of all ocular injuries resulting from mine explosions are due to fragmentation of shrapnel upon detonation, so gross anatomical inspection by penlight may not rule out open globe injury. Harlan JB, Pieramici DJ. Evaluation of patients with ocular trauma. Ophthalmol Clin North Am. 2002; 15(2):153-61./ref> Computerized tomography (CT) may detect foreign matter and aid the clinician in determining the presence of an open-globe injury.
The presence of an open globe injuries may be determined by clinical examination and CT. However, full globe exploration with 360-degree removal of the conjunctiva (periotomy), separation of the rectus muscles, and subsequent examination of the sclera remains the most effective way to determine whether or not the globe has been injured. During exploratory surgery, foreign debris may be removed with microsurgical tools by inspection under the operating room microscope. Globe lacerations are typically repaired as far posteriorly as possible to prevent any further deficits in visual acuity. Lacerations posterior to the exposed area are not sutured; attempts to seal these injuries often results in the extrusion of intraocular components. Healing of these injuries occurs naturally by scarring of dorsal orbital fat to the sclera. If a clinically significant increase in intraocular pressure is detected with orbital compartment syndrome, the ophthalmologist may perform an emergency canthotomy on the lateral canthus. Canalicular injuries, as well as lid lacerations, are also commonly repaired in the military hospital setting. Suturing the laceration after the removal of foreign bodies depends on the location of global fissure: 10-0 nylon with cyanoacrylate glue is commonly used on the cornea, and processed human pericardium may be employed if it is surgically available. Globe closure of the limbus and sclera requires 9-0 and 8-0 nylon, respectively.
If damage to the globe is irreparable, the ophthalmologist may conduct a primary enucleation, evisceration (ophthalmology), or exenteration in the combat hospital. 14% of globe injuries sustained during Operation Iraqi Freedom have required enucleation. Implantation of an oculoplastic silicone sphere or similar device commonly follows these procedures.
The selective estrogen receptor modulators (such as tamoxifen) reduce the risk of breast cancer but increase the risk of thromboembolism and endometrial cancer. There is no overall change in the risk of death. They are thus not recommended for the prevention of breast cancer in women at average risk but may be offered for those at high risk. The benefit of breast cancer reduction continues for at least five years after stopping a course of treatment with these medications.
Prostate cancer screening is an attempt to find unsuspected cancers. Initial screens may lead to more invasive follow-up tests such as a biopsy. Options include the digital rectal exam (DRE) and the prostate-specific antigen (PSA) blood test. Such screening is controversial and, in some people, may lead to unnecessary disruption and possibly harmful consequences. Routine screening with either a DRE or PSA is not supported by the evidence as there is no mortality benefit from screening.
The United States Preventive Services Task Force (USPSTF) recommends against the PSA test for prostate cancer screening in healthy men regardless of age. They concluded that the potential benefit of testing does not outweigh the expected harms. The Centers for Disease Control and Prevention shared that conclusion. The American Society of Clinical Oncology and the American College of Physicians discourages screening for those who are expected to live less than ten to fifteen years, while in those with a greater life expectancy a decision should be made by the person in question based on the potential risks and benefits. In general, they concluded, "it is uncertain whether the benefits associated with PSA testing for prostate cancer screening are worth the harms associated with screening and subsequent unnecessary treatment." American Urological Association (AUA 2013) guidelines call for weighing the benefits of preventing prostate cancer mortality in 1 man for every 1,000 men screened over a ten-year period against the known harms associated with diagnostic tests and treatment. The AUA recommends screening decisions in those 55 to 69 be based on shared decision making, and that if screening is performed it should occur no more often than every two years.
In those who are being regularly screened, 5-alpha-reductase inhibitor (finasteride and dutasteride) reduce the overall risk of being diagnosed with prostate cancer; however, there is insufficient data to determine if they have an effect on the risk of death and may increase the chance of more serious cases.
The WHO has published several testing protocols for the disease. The standard method of testing is real-time reverse transcription polymerase chain reaction (rRT-PCR). The test is typically done on respiratory samples obtained by a nasopharyngeal swab; however, a nasal swab or sputum sample may also be used. Results are generally available within a few hours to two days. Blood tests can be used, but these require two blood samples taken two weeks apart and the results have little immediate value. Chinese scientists were able to isolate a strain of the coronavirus and publish the genetic sequence so laboratories across the world could independently develop polymerase chain reaction (PCR) tests to detect infection by the virus. As of 4 April 2020, antibody tests (which may detect active infections and whether a person had been infected in the past) were in development, but not yet widely used. The Chinese experience with testing has shown the accuracy is only 60 to 70%. The FDA in the United States approved the first point-of-care test on 21 March 2020 for use at the end of that month.
Diagnostic guidelines released by Zhongnan Hospital of Wuhan University suggested methods for detecting infections based upon clinical features and epidemiological risk. These involved identifying people who had at least two of the following symptoms in addition to a history of travel to Wuhan or contact with other infected people: fever, imaging features of pneumonia, normal or reduced white blood cell count or reduced lymphocyte count.
A study asked hospitalized COVID-19 patients to cough into a sterile container, thus producing a saliva sample, and detected virus in eleven of twelve patients using RT-PCR. This technique has the potential of being quicker than a swab and involving less risk to health care workers (collection at home or in the car).
Along with laboratory testing, chest CT scans may be helpful to diagnose COVID-19 in individuals with a high clinical suspicion of infection but is not recommended for routine screening. Bilateral multilobar ground-glass opacities with a peripheral, asymmetric and posterior distribution are common in early infection. Subpleural dominance, crazy paving (lobular septal thickening with variable alveolar filling), and consolidation may appear as the disease progresses.
Few data are available about microscopic lesions and the pathophysiology of COVID-19. The main pathological findings at autopsy are:
- Macroscopy: pleurisy, pericarditis, lung consolidation and pulmonary oedema
- Four types of severity of viral pneumonia can be observed:
- minor pneumonia: minor serous exudation, minor fibrin exudation
- mild pneumonia: pulmonary oedema, pneumocyte hyperplasia, large atypical pneumocytes, interstitial inflammation with lymphocytic infiltration and multinucleated giant cell formation
- severe pneumonia: diffuse alveolar damage (DAD) with diffuse alveolar exudates. DAD is the cause of acute respiratory distress syndrome (ARDS) and severe hypoxemia.
- healing pneumonia: organisation of exudates in alveolar cavities and pulmonary interstitial fibrosis
- plasmocytosis in BAL
- Blood: disseminated intravascular coagulation (DIC); leukoerythroblastic reaction
- Liver: microvesicular steatosis
While needlestick injuries have the potential to transmit bacteria, protozoa, viruses and prions, the risk of contracting hepatitis B, hepatitis C, and HIV is the highest. The World Health Organization estimated that in 2000, 66,000 hepatitis B, 16,000 hepatitis C, and 1,000 HIV infections were caused by needlestick injuries. In places with higher rates of blood-borne diseases in the general population, healthcare workers are more susceptible to contracting these diseases from a needlestick injury.
Hepatitis B carries the greatest risk of transmission, with 10% of exposed workers eventually showing seroconversion and 10% having symptoms. Higher rates of hepatitis B vaccination among the general public and healthcare workers have reduced the risk of transmission; non-healthcare workers still have a lower HBV vaccine rate and therefore a higher risk. The hepatitis C transmission rate has been reported at 1.8%, but newer, larger surveys have shown only a 0.5% transmission rate. The overall risk of HIV infection after percutaneous exposure to HIV-infected material in the health care setting is 0.3%. Individualized risk of blood-borne infection from a used biomedical sharp is further dependent upon additional factors. Injuries with a hollow-bore needle, deep penetration, visible blood on the needle, a needle located in a deep artery or vein, or a biomedical device contaminated with blood from a terminally ill patient increase the risk for contracting a blood-borne infection.
After a needlestick injury, certain procedures must be followed to minimize the risk of infection. Lab tests of the recipient should be obtained for baseline studies, including HIV, acute hepatitis panel (HAV IgM, HBsAg, HB core IgM, HCV) and for immunized individuals, HB surface antibody. Unless already known, the infectious status of the source needs to be determined. Unless the source is known to be negative for HBV, HCV, and HIV, post-exposure prophylaxis (PEP) should be initiated, ideally within one hour of the injury.
If the status of the source patient is unknown, their blood should be tested for HIV as soon as possible following exposure. The injured person can start antiretroviral drugs for PEP as soon as possible, preferably within three days of exposure. There is no vaccine for HIV. When the source of blood is known to be HIV positive, a 3-drug regimen is recommended by the CDC; those exposed to blood with a low viral load or otherwise low risk can use a 2-drug protocol. The antivirals are taken for 4 weeks and can include nucleoside reverse transcriptase inhibitors (NRTIs), nucleotide reverse transcriptase inhibitors (NtRTIs), Non-nucleoside reverse transcriptase inhibitors (NNRTIs), protease inhibitors (PIs), or fusion inhibitors. All of these drugs can have severe side effects. PEP may be discontinued if the source of blood tests HIV-negative. Follow-up of all exposed individuals includes counseling and HIV testing for at least six months after exposure. Such tests are done at baseline, 6 weeks, 12 weeks, and 6 months and longer in specific circumstances, such as co-infection with HCV.
As outlined above, there is no recommended alcohol intake with respect to cancer risk alone as it varies with each individual cancer. See Recommended maximum intake of alcoholic beverages for a list of governments' guidances on alcohol intake which, for a healthy man, range from 140–280g per week.
One meta-analysis suggests that risks of cancers may start below the recommended levels. "Risk increased significantly for drinkers, compared with non-drinkers, beginning at an intake of 25 g (< 2 standard drinks) per day for the following: cancers of the oral cavity and pharynx (relative risk, RR, 1.9), esophagus (RR 1.4), larynx (RR 1.4), breast (RR 1.3), liver (RR 1.2), colon (RR 1.1), and rectum (RR 1.1)"
World Cancer Research Fund recommends that people aim to limit consumption to two drinks a day for a man and one for a woman. It defines a "drink" as containing about 10–15 grams of ethanol.
"DCIS patients and control subjects did not differ with respect to oral contraceptive use, hormone replacement therapy, alcohol consumption or smoking history, or breast self-examination. Associations for LCIS were similar."