Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Tender or enlarged inguinal lymph nodes or swelling in the extremities can alert physicians or public health officials to infection.
With appropriate laboratory equipment, microscopic examination of differential morphological features of microfilariae in stained blood films can aid diagnosis—in particular the examination of the tail portion, the presence of a sheath, and the size of the cephalic space. Giemsa staining will uniquely stain "B. malayi" sheath pink. However, blood films can prove difficult given the nocturnal periodicity of some forms of "B. malayi".
PCR based assays are highly sensitive and can be used to monitor infections both in the human and the mosquito vector. However, PCR assays are time-consuming, labor-intensive and require laboratory equipment. Lymphatic filariasis mainly affects the poor, who live in areas without such resources.
The ICT antigen card test is widely used in the diagnosis of "W. bancrofti", but commercial antigens of "B. malayi" have not been historically widely available. However, new research developments have identified a recombinant antigen (BmR1) that is both specific and sensitive in the detection of IgG4 antibodies against "B. malayi" and "B. timori" in ELISA and immunochromatographic rapid dipstick (Brugia Rapid) test. However, it appears that immunoreactivity to this antigen is variable in individuals infected with other filarial nematodes. This research has led to the development of two new rapid immunochromatographic IgG4 cassette tests – WB rapid and panLF rapid – which detect bancroftian filariasis and all three species of lymphatic filariasis, respectively, with high sensitivity and selectivity.
Various concentration methods are applied: membrane filter, Knott's concentration method, and sedimentation technique.
Polymerase chain reaction (PCR) and antigenic assays, which detect circulating filarial antigens, are also available for making the diagnosis. The latter are particularly useful in amicrofilaraemic cases. Spot tests for antigen are far more sensitive, and allow the test to be done anytime, rather in the late hours.
Lymph node aspirate and chylous fluid may also yield microfilariae. Medical imaging, such as CT or MRI, may reveal "filarial dance sign" in the chylous fluid; X-ray tests can show calcified adult worms in lymphatics. The DEC provocation test is performed to obtain satisfying numbers of parasites in daytime samples. Xenodiagnosis is now obsolete, and eosinophilia is a nonspecific primary sign.
A blood smear is a simple and fairly accurate diagnostic tool, provided the blood sample is taken during the period in the day when the juveniles are in the peripheral circulation. Technicians analyzing the blood smear must be able to distinguish between "W. bancrofti" and other parasites potentially present.
A polymerase chain reaction test can also be performed to detect a minute fraction, as little as 1 pg, of filarial DNA.
Some infected people do not have microfilariae in their blood. As a result, tests aimed to detect antigens from adult worms can be used.
Ultrasonography can also be used to detect the movements and noises caused by the movement of adult worms.
Dead, calcified worms can be detected by X-ray examinations.
The standard method for diagnosing active infection is by finding the microfilariae via microscopic examination. This may be difficult, as in most parts of the world, microfilariae only circulate in the blood at night. For this reason, the blood has to be collected nocturnally. The blood sample is typically in the form of a thick smear and stained with Giemsa stain. Testing the blood serum for antibodies against the disease may also be used.
Filariasis is usually diagnosed by identifying microfilariae on Giemsa stained, thin and thick blood film smears, using the "gold standard" known as the finger prick test. The finger prick test draws blood from the capillaries of the finger tip; larger veins can be used for blood extraction, but strict windows of the time of day must be observed. Blood must be drawn at appropriate times, which reflect the feeding activities of the vector insects. Examples are "W. bancrofti", whose vector is a mosquito; night is the preferred time for blood collection. "Loa loa's" vector is the deer fly; daytime collection is preferred. This method of diagnosis is only relevant to microfilariae that use the blood as transport from the lungs to the skin. Some filarial worms, such as "M. streptocerca" and "O. volvulus", produce microfilarae that do not use the blood; they reside in the skin only. For these worms, diagnosis relies upon skin snips and can be carried out at any time.
The Global Alliance to Eliminate Lymphatic Filariasis was launched by the World Health Organization in 2000 with two primary goals: 1) to interrupt transmission and 2) to alleviate the suffering of affected individuals. Mass drug treatment programs are the main strategy for interrupting parasite transmission, and morbidity management, focusing on hygiene, improves the quality of life of infected individuals.
The World Health Organization recommends mass deworming—treating entire groups of people who are at risk with a single annual dose of two medicines, namely albendazole in combination with either ivermectin or diethylcarbamazine citrate. With consistent treatment, since the disease needs a human host, the reduction of microfilariae means the disease will not be transmitted, the adult worms will die out, and the cycle will be broken. In sub-Saharan Africa, albendazole (donated by GlaxoSmithKline) is being used with ivermectin (donated by Merck & Co.) to treat the disease, whereas elsewhere in the world, albendazole is used with diethylcarbamazine. Transmission of the infection can be broken when a single dose of these combined oral medicines is consistently maintained annually for a duration of four to six years. Using a combination of treatments better reduces the number of microfilariae in blood. Avoiding mosquito bites, such as by using insecticide-treated mosquito bed nets, also reduces the transmission of lymphatic filariasis.
The Carter Center's International Task Force for Disease Eradication declared lymphatic filariasis one of six potentially eradicable diseases. According to medical experts, the worldwide effort to eliminate lymphatic filariasis is on track to potentially succeed by 2020.
For similar-looking but causally unrelated podoconiosis, international awareness of the disease will have to increase before elimination is possible. In 2011, podoconiosis was added to the World Health Organization's Neglected Tropical Diseases list, which was an important milestone in raising global awareness of the condition.
The efforts of the Global Programme to Eliminate LF are estimated to have prevented 6.6 million new filariasis cases from developing in children between 2000 and 2007, and to have stopped the progression of the disease in another 9.5 million people who had already contracted it. Dr. Mwele Malecela, who chairs the programme, said: "We are on track to accomplish our goal of elimination by 2020." In 2010, the WHO published a detailed progress report on the elimination campaign in which they assert that of the 81 countries with endemic LF, 53 have implemented mass drug administration, and 37 have completed five or more rounds in some areas, though urban areas remain problematic.
Prevention focuses on protecting against mosquito bites in endemic regions. Insect repellents and mosquito nets are useful to protect against mosquito bites. Public education efforts must also be made within the endemic areas of the world to successfully lower the prevalence of "W. bancrofti" infections.
Brugia timori is a human filarial parasitic nematode (roundworm) which causes the disease "Timor filariasis." While this disease was first described in 1965, the identity of "Brugia timori" as the causative agent was not known until 1977. In that same year, "Anopheles barbirostris" was shown to be its primary vector. There is no known animal reservoir host.
Anthelmintics such as diethylcarbamazine and albendazole have shown promise in the treatment of "Brugia timori" filariasis. Some researchers are confident that "Brugia timori" filariasis may be an eradicable disease. Related filarial nematodes have been found highly sensitive to elimination of their endosymbiotic Wolbachia bacteria, and this may be a powerful attack route against "Brugia timori" as well.
The diagnostic criteria for tropical pulmonary eosinophilia include:
- a history supportive of exposure to lymphatic filariasis;
- a peripheral eosinophilia count greater than 3 × 10/L);
- an elevated serum IgE levels (> 1000 kU/L);
- increased titers of antifilarial antibodies;
- peripheral blood negative for microfilariae; and
- a clinical response to diethylcarbamazine.
High antifilarial IgG titers to microfilariae often result in cross reactivity with other nonfilarial helminth antigens, such as strongyloides and schistosoma antigens, as demonstrated in reported cases. It is important to exclude other parasitic infections before tropical pulmonary eosinophilia is diagnosed, by serological tests, examination of stool specimens in a laboratory experienced in parasitic infections, or a trial of anthelminthic medication. Other parasitic infections, such as the zoonotic filariae, dirofilariasis, ascariasis, strongyloides, visceral larva migrans and hookworm disease, may also be confused with tropical pulmonary eosinophilia because of overlapping clinical features, serological profile and response to diethylcarbamazine. Radiological findings are nonspecific, with normal appearance on chest X-ray in up to 20% of patients. Lung biopsy is not part of the routine diagnostic workup of tropical pulmonary eosinophilia.
The dramatic response to a commonly used drug for filaria (diethylcarbamazine) almost confirms the diagnosis. No universal treatment guidelines have been established for tropical pulmonary eosinophilia. The antifilarial diethylcarbamazine (6 mg/kg/day in three divided doses for 21 days remains the main therapeutic agent, and is generally well tolerated. Reported side effects include headache, fever, pruritus and gastrointestinal upset. The eosinophil count often falls dramatically within 7–10 days of starting treatment.
A primary hydrocele is described as having the following characteristics:
- Transillumination positive
- Fluctuation positive
- Impulse on coughing negative (positive in congenital hydrocele)
- Reducibility absent
- Testis cannot be palpated separately. (exception - funicular hydrocele, encysted hydrocele)kuth
- Can get above the swelling.
Most hydroceles appearing in the first year of life seldom require treatment as they resolve without treatment. Hydroceles that persist after the first year or occur later in life require treatment through open operation for removing surgically, as these may have little tendency towards regression. Method of choice is open operation under general or spinal anesthesia, which is sufficient in adults. General anesthesia is the choice in children. Local infiltration anesthesia is not satisfactory because it cannot abolish abdominal pain due to traction on the spermatic cord. If a testicular tumor is suspected, a hydrocele must not be aspirated as malignant cells can be disseminated via the scrotal skin to its lymphatic field. This is excluded clinically by ultrasonography. If a tumor is not present, the hydrocele fluid can be aspirated with a needle and syringe. Clear straw-colored fluid contains mostly albumin and fibrinogen. If the fluid is allowed to drain in a collecting vessel, it does not clot but can be coagulated if small amounts of blood come in contact with the damaged tissue. In long standing cases, hydrocele fluid may be opalescent with cholesterol and may contain crystals of tyrosine and a palpable normal testis confirms the diagnosis; other wise surgical exploration of testis is needed.
The scrotum should be supported post-operatively and ice bags should be placed to soothe pain. Regular changes of surgical dressings, observation of drainage, and looking for other complications may be necessary to prevent re-operation. In cases with presence of one or more complications, open operation with/without Orchidectomy is preferred depending on the complications.
Jaboulay’s procedure
After aspiration of a primary hydrocoele, fluid reaccumulates over the following months and periodic aspiration or operation is needed. For younger patients, operation is usually preferred, whereas the elderly or unfit can have aspirations repeated whenever the hydrocoele becomes uncomfortably large. Sclerotherapy is an alternative; after aspiration, 6% aqueous phenol (10-20 ml) together with 1% lidocaine for analgesia can be injected and this often inhibits reaccumulation. Several treatments may be necessary. Aspiration of the hydrocele contents and injection with sclerosing agents sometimes with Tetracyclines is effective but it can be very painful. These alternative treatments are generally regarded as unsatisfactory treatment because of the high incidence of recurrences and the frequent necessity for repetition of the procedure.