Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
One 10-year-old girl with Crigler–Najjar syndrome type I was successfully treated by liver cell transplantation.
The homozygous Gunn rat, which lacks the enzyme uridine diphosphate glucuronyltransferase (UDPGT), is an animal model for the study of Crigler–Najjar syndrome. Since only one enzyme is working improperly, gene therapy for Crigler-Najjar is a theoretical option which is being investigated.
Infants with DG who drink breast milk or lactose-containing formula may have elevated levels of galactose in their blood, tissues, and urine due to their impaired ability to process the galactose after it has been absorbed. DG can be detected in dried blood spots by newborn screening on the basis of elevated galactose metabolite levels, low GALT enzyme activity, or both. DG can be diagnosed by genetic testing.
Not all NBS tests for galactosemia are designed to detect DG so affected infants born in one location may be detected while those born in another may not. For example, all states in the US screen for classic galactosemia in their NBS panel, but some states have lower GALT enzyme activity cut-off levels than others. NBS in states with a low GALT cut off level still detects classic galactosemia and helps to minimize false positives, but it can also result in "missed" DG diagnoses for those samples with partial GALT enzyme activity that is above the cut-off. In those states, a NBS result for galactosemia designated as "normal" may not be informative about an infant's DG status.
Most infants with DG who are detected by NBS have their diagnosis confirmed in a follow-up evaluation. The differential diagnosis of a positive newborn screen for galactosemia includes: classic galactosemia, clinical variant galactosemia, DG, GALE (epimerase) deficiency, GALK (galactokinase) deficiency, or an initial false positive result. There are also other rare conditions, such as portosystemic venous shunting and hepatic arteriovenous malformations, or Fanconi-Bickel Syndrome (GSDXI) that can lead to elevated blood galactose or urinary galactitol, triggering an initial suspicion of galactosemia.
Neonatal jaundice may develop in the presence of sepsis, hypoxia, hypoglycemia, hypothyroidism, hypertrophic pyloric stenosis, galactosemia, fructosemia, etc.
Hyperbilirubinemia of the unconjugated type may be caused by:
- increased production
- hemolysis (e.g., hemolytic disease of the newborn, hereditary spherocytosis, sickle cell disease)
- ineffective erythropoiesis
- massive tissue necrosis or large hematomas
- decreased clearance
- drug-induced
- physiological neonatal jaundice and prematurity
- liver diseases such as advanced hepatitis or cirrhosis
- breast milk jaundice and Lucey–Driscoll syndrome
- Crigler–Najjar syndrome and Gilbert syndrome
In Crigler–Najjar syndrome and Gilbert syndrome, routine liver function tests are normal, and hepatic histology usually is normal, too. No evidence for hemolysis is seen. Drug-induced cases typically regress after discontinuation of the substance. Physiological neonatal jaundice may peak at 85–170 µmol/l and decline to normal adult concentrations within two weeks. Prematurity results in higher levels.
The diagnosis of an individual with acrodermatitis enteropathica includes each of the following:
- Plasma zinc level (lab)
- Light microscopy (skin biopsy)
- Electron microscopy (histology)
A defect in the UGT1A1-gene, also linked to Crigler–Najjar syndrome and Gilbert's syndrome, is responsible for the congenital form of Lucey–Driscoll syndrome.
The common cause is congenital, but it can also be caused by maternal steroids passed on through breast milk to the newborn. It is different from breast feeding-associated jaundice (breast-fed infants have higher bilirubin levels than formula-fed ones).
Very little is known about outcomes in DG after early childhood. This is because many infants with DG are born in states where they are not diagnosed by NBS, and of those who are diagnosed, most are discharged from metabolic follow-up as toddlers.
Because it is unclear whether DG has any long-term developmental impacts, or if diet modification would prevent or resolve any issues that may result from DG, any developmental or psychosocial problems experienced by a person with DG should be treated symptomatically and the possibility of other causes should be explored.
Of note, premature ovarian insufficiency, a common outcome among girls and women with classic galactosemia, has been checked by hormone studies and does not appear to occur at high prevalence among girls with DG.
Prior Research Concerning Developmental Outcomes of Children with DG: Three
studies of developmental outcomes of children with DG have been published.
- The first looked at biochemical markers and developmental outcomes in a group of 28 toddlers and young children with DG, some of whom had drunk milk through infancy and some of whom had drunk soy formula. The authors found that galactose metabolites were significantly elevated in the infants drinking milk over those drinking soy. However, all of the children scored within normal limits on standardized tests of child development.
- A second study of developmental outcomes in DG looked at 3 to 10 year olds living in a large metropolitan area and asked whether children diagnosed as newborns with DG in this group were more likely than their unaffected peers to receive special educational services later in childhood. The answer was yes. Specifically, children with DG in this group were significantly more likely than other children to receive a diagnosis of, or special educational services for, a speech/language disorder.
- The final study reported that addressed developmental outcomes in DG was a pilot study involving direct assessments of 15 children, all ages 6–11 years old; 15 had DG and 5 did not. Children in the DG group showed slower auditory processing than did the control group. The DG group also showed some slight differences in auditory memory, receptive language/ listening skills, social-emotional functioning, and balance and fine motor coordination.
Combined,
these studies "suggest" that school age
children with DG "might" be at
increased risk for specific developmental difficulties compared with controls. All
of the relevant studies were limited, however, leaving the question of whether
children with DG are truly at increased risk for developmental difficulties
unresolved. Current reports also leave open the question of whether dietary
exposure to milk in infancy associates with developmental outcomes in DG. More
research is needed to answer these questions.
Galactose is converted into glucose by the action of three enzymes, known as the Leloir pathway. There are diseases associated with deficiencies of each of these three enzymes:
Acrodermatitis enteropathica without treatment is fatal, and affected individuals may die within a few years. There is no cure for the condition. Treatment includes lifelong dietary zinc supplementation.
Infants are routinely screened for galactosemia in the United States, and the diagnosis is made while the person is still an infant. Infants affected by galactosemia typically present with symptoms of lethargy, vomiting, diarrhea, failure to thrive, and jaundice. None of these symptoms are specific to galactosemia, often leading to diagnostic delays. Luckily, most infants are diagnosed on newborn screening. If the family of the baby has a history of galactosemia, doctors can test prior to birth by taking a sample of fluid from around the fetus (amniocentesis) or from the placenta (chorionic villus sampling or CVS).
A galactosemia test is a blood test (from the heel of the infant) or urine test that checks for three enzymes that are needed to change galactose sugar that is found in milk and milk products into glucose, a sugar that the human body uses for energy. A person with galactosemia doesn't have one of these enzymes. This causes high levels of galactose in the blood or urine.
Galactosemia is normally first detected through newborn screening, or NBS. Affected children can have serious, irreversible effects or even die within days from birth. It is important that newborns be screened for metabolic disorders without delay. Galactosemia can even be detected through NBS before any ingestion of galactose-containing formula or breast milk.
Detection of the disorder through newborn screening (NBS) does not depend on protein or lactose ingestion, and, therefore, it should be identified on the first specimen unless the infant has been transfused. A specimen should be taken prior to transfusion. The enzyme is prone to damage if analysis of the sample is delayed or exposed to high temperatures. The routine NBS is accurate for detection of galactosemia. Two screening tests are used to screen infants affected with galactosemia—the Beutler's test and the Hill test. The Beutler's test screens for galactosemia by detecting the level of enzyme of the infant. Therefore, the ingestion of formula or breast milk does not affect the outcome of this part of the NBS, and the NBS is accurate for detecting galactosemia prior to any ingestion of galactose.
Duarte galactosemia is a milder form of classical galactosemia and usually has no long term side effects.
In most regions, galactosemia is diagnosed as a result of newborn screening, most commonly by determining the concentration of galactose in a dried blood spot. Some regions will perform a second-tier test of GALT enzyme activity on samples with elevated galactose, while others perform both GALT and galactose measurements. While awaiting confirmatory testing for classic galactosemia, the infant is typically fed a soy-based formula, as human and cow milk contains galactose as a component of lactose. Confirmatory testing would include measurement of enzyme activity in red blood cells, determination of Gal-1-P levels in the blood, and mutation testing. The differential diagnosis for elevated galactose concentrations in blood on a newborn screening result can include other disorders of galactose metabolism, including galactokinase deficiency and galactose epimerase deficiency. Enzyme assays are commonly done using fluorometric detection or older radioactively labeled substrates.
Imaging by ultrasonography, MRCP, or CT scan usually make the diagnosis. MRCP can be used to define the lesion anatomically prior to surgery.
Occasionally Mirizzi's syndrome is diagnosed or confirmed on ERCP when requested to alleviate obstructive jaundice or cholangitis by means of an endoscopically placed stent, or when USS has been wrongly reported as choledocolithiasis.
There is no cure for GALT deficiency, in the most severely affected patients, treatment involves a galactose free diet for life. Early identification and implementation of a modified diet greatly improves the outcome for patients. The extent of residual GALT enzyme activity determines the degree of dietary restriction. Patients with higher levels of residual enzyme activity can typically tolerate higher levels of galactose in their diets. As patients get older, dietary restriction is often relaxed. With the increased identification of patients and their improving outcomes, the management of patients with galactosemia in adulthood is still being understood.
After diagnosis, patients are often supplemented with calcium and vitamin D3. Long-term manifestations of the disease including ovarian failure in females, ataxia. and growth delays are not fully understood. Routine monitoring of patients with GALT deficiency includes determining metabolite levels (galactose 1-phosphate in red blood cells and galactitol in urine) to measure the effectiveness of and adherence to dietary therapy, ophthalmologic examination for the detection of cataracts and assessment of speech, with the possibility of speech therapy if developmental verbal dyspraxia is evident.
Because of the ease of therapy (dietary exclusion of fructose), HFI can be effectively managed if properly diagnosed. In HFI, the diagnosis of homozygotes is difficult, requiring a genomic DNA screening with allele specific probes or an enzyme assay from a liver biopsy. Once identified, parents of infants who carry mutant aldolase B alleles leading to HFI, or older individuals who have clinical histories compatible with HFI can be identified and counselled with regard to preventive therapy: dietary exclusion of foods containing fructose, sucrose, or sorbitol. If possible, individuals who suspect they might have HFI, should avoid testing via fructose challenge as the results are non-conclusive for individuals with HFI and even if the diagnostic administration fructose is properly controlled, profound hypoglycemia and its sequelae can threaten the patient's well-being.
Precise diagnosis by measuring proteins induced by vitamin k absence (PIVKA).
But this is usually not required.
Neonatal sepsis screening:
1. DLC (differential leukocyte count) showing increased numbers of polymorphs.
2. DLC: band cells > 20%.
3. increased haptoglobins.
4. micro ESR (Erythrocyte Sedimentation Rate) titer > 15mm.
5. gastric aspirate showing > 5 polymorphs per high power field.
6. newborn CSF (Cerebrospinal fluid) screen: showing increased cells and proteins.
7. suggestive history of chorioamnionitis, PROM (Premature rupture of membranes), etc...
Culturing for microorganisms from a sample of CSF, blood or urine, is the gold standard test for definitive diagnosis of neonatal sepsis. This can give false negatives due to the low sensitivity of culture methods and because of concomitant antibiotic therapy. Lumbar punctures should be done when possible as 10-15% presenting with sepsis also have meningitis, which warrants an antibiotic with a high CSF penetration.
CRP is not very accurate in picking up cases.
The diagnosis of nipple discharge will be determined upon an examination by a health provider who will ask questions about symptoms and medical history. Tests that may be done include:
- Prolactin blood test
- Thyroid blood tests
- Head CT scan or MRI to look for pituitary tumor
- Mammography
- Ultrasound of the breast
- Breast biopsy
- Ductography or ductogram: an x-ray with contrast dye injected into the affected milk duct
- Skin biopsy, if Paget disease is a concern
Treatment consists of vitamin K supplementation. This is often given prophylactically to newborns shortly after birth.
Once a child is born prematurely, thought must be given to decreasing the risk for developing NEC. Toward that aim, the methods of providing hyperalimentation and oral feeds are both important. In a 2012 policy statement, the American Academy of Pediatrics recommended feeding preterm infants human milk, finding "significant short- and long-term beneficial effects," including reducing the rate of NEC by a factor of two or more.
A study by researchers in Peoria, IL, published in "Pediatrics" in 2008, demonstrated that using a higher rate of lipid (fats and/or oils) infusion for very low birth weight infants in the first week of life resulted in zero infants developing NEC in the experimental group, compared with 14% with NEC in the control group. (They started the experimental group at 2 g/kg/d of 20% IVFE and increased within two days to 3 g/kg/d; amino acids were started at 3 g/kg/d and increased to 3.5.)
Neonatologists at the University of Iowa reported on the importance of providing small amounts of trophic oral feeds of human milk starting as soon as possible, while the infant is being primarily fed intravenously, in order to prime the immature gut to mature and become ready to receive greater oral intake. Human milk from a milk bank or donor can be used if mother's milk is unavailable. The gut mucosal cells do not get enough nourishment from arterial blood supply to stay healthy, especially in very premature infants, where the blood supply is limited due to immature development of the capillaries, so nutrients from the lumen of the gut are needed.
A Cochrane review published in April 2014 has established that supplementation of probiotics enterally "prevents severe NEC as well as all-cause mortality in preterm infants."
Increasing amounts of milk by 30 to 40 ml/kg is safe in infant who are born weighing very little. Not beginning feeding an infant by mouth for more than 4 days does not appear to have protective benefits.
Data from the NICHD Neonatal Research Network's Glutamine Trial showed that the incidence of NEC among extremely low birthweight (ELBW, <1000 g) infants fed with more than 98% human milk from their mothers was 1.3%, compared with 11.1% among infants fed only preterm formula, and 8.2% among infants fed a mixed diet, suggesting that infant deaths could be reduced by efforts to support production of milk by mothers of ELBW newborns.
Research from the University of California, San Diego found that higher levels of one specific human milk oligosaccharide, disialyllacto-N-tetraose, may be protective against the development of NEC.
The bilirubin levels for initiative of phototherapy varies depends on the age and health status of the newborn. However, any newborn with a total serum bilirubin greater than 359 μmol/l ( 21 mg/dL) should receive phototherapy.
The diagnosis is usually suspected clinically but often requires the aid of diagnostic imaging modalities, most commonly radiography. Specific radiographic signs of NEC are associated with specific Bell's stages of the disease:
Bell's stage 1/Suspected disease:
- Mild systemic disease (apnea, lethargy, bradycardia, temperature instability)
- Mild intestinal signs (abdominal distention, increased gastric residuals, bloody stools)
- Non-specific or normal radiological signs
Bell's stage 2/Definite disease:
- Mild to moderate systemic signs
- Additional intestinal signs (absent bowel sounds, abdominal tenderness)
- Specific radiologic signs (pneumatosis intestinalis or portal venous air)
- Laboratory changes (metabolic acidosis, thrombocytopaenia)
Bell's stage 3/Advanced disease:
- Severe systemic illness (hypotension)
- Additional intestinal signs (striking abdominal distention, peritonitis)
- Severe radiologic signs (pneumoperitoneum)
- Additional laboratory changes (metabolic and respiratory acidosis, disseminated intravascular coagulation)
More recently ultrasonography has proven to be useful as it may detect signs and complications of NEC before they are evident on radiographs, specifically in cases that involve a paucity of bowel gas, a gasless abdomen, or a sentinel loop. Diagnosis is ultimately made in 5–10% of very low-birth-weight infants (<1,500g).
Diagnosis is often by measuring the serum bilirubin level in the blood. In those who are born after 35 weeks and are more than a day old transcutaneous bilirubinometer may also be used. The use of an icterometer, a piece of transparent plastic painted in five transverse strips of graded yellow lines, is not recommended.
Premature thelarche is a rare medical condition that is characterized by isolated breast development (thelarche being the onset of breast development) at a very early age with no other signs of sexual maturation. It generally occurs within the first 1 to 4 years of life, with a peak incidence of 2 years of age, and tends to resolve within 1 to 2 years without treatment. The condition never advances beyond Tanner stage III breast development.
Premature thelarche is distinct from neonatal breast hyperplasia (see also witch's milk), which is common in the first few months of life and is due to acute exposure to high levels of sex hormones like estrogen during pregnancy. Premature thelarche is also distinct from precocious puberty, which generally occurs later in childhood and also includes development of other pubertal characteristics.
Treatment with fennel ("Foeniculum vulgare") has been associated with premature thelarche in several case reports. Estradiol levels were found to be elevated by 15–20 times for the ages of the afflicted girls (5 months to 5 years). Also, fennel is known to contain anethole, an estrogenic compound.
Treatment of HFI depends on the stage of the disease, and the severity of the symptoms. Stable patients without acute intoxication events are treated by careful dietary planning that avoids fructose and its metabolic precursors. Fructose is replaced in the diet by glucose, maltose or other sugars. Management of patients with HFI often involves dietitians who have a thorough knowledge of what foods are acceptable.
A supernumerary nipple (also known as a third nipple, triple nipple, accessory nipple, polythelia or the related condition: polymastia) is an additional nipple occurring in mammals, including humans. Often mistaken for moles, supernumerary nipples are diagnosed in humans at a rate of approximately 1 in 18 people.
The nipples appear along the two vertical "milk lines," which start in the armpit on each side, run down through the typical nipples and end at the groin. They are classified into eight levels of completeness from a simple patch of hair to a milk-bearing breast in miniature.
"Polythelia" refers to the presence of an additional nipple alone while "polymastia" denotes the much rarer presence of additional mammary glands.
Although usually presenting on the milk line, pseudomamma can appear as far away as the foot.
A possible relationship with mitral valve prolapse has been proposed.