Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Transfusion therapy lowers the risk for a new silent stroke in children who have both abnormal cerebral artery blood flow velocity, as detected by transcranial Doppler, and previous silent infarct, even when the initial MRI showed no abnormality. A finding of elevated TCD ultrasonographic velocity warrants MRI of the brain, as those with both abnormalities who are not provided transfusion therapy are at higher risk for developing a new silent infarct or stroke than are those whose initial MRI showed no abnormality.
Preventive measures that can be taken to avoid sustaining a silent stroke are the same as for stroke. Smoking cessation is the most immediate step that can be taken, with the effective management of hypertension the major medically treatable factor.
For diagnosing ischemic stroke in the emergency setting:
- CT scans ("without" contrast enhancements)
- MRI scan
For diagnosing hemorrhagic stroke in the emergency setting:
- CT scans ("without" contrast enhancements)
- MRI scan
For detecting chronic hemorrhages, MRI scan is more sensitive.
For the assessment of stable stroke, nuclear medicine scans SPECT and PET/CT may be helpful. SPECT documents cerebral blood flow and PET with FDG isotope the metabolic activity of the neurons.
When a stroke has been diagnosed, various other studies may be performed to determine the underlying cause. With the current treatment and diagnosis options available, it is of particular importance to determine whether there is a peripheral source of emboli. Test selection may vary since the cause of stroke varies with age, comorbidity and the clinical presentation. The following are commonly used techniques:
- an ultrasound/doppler study of the carotid arteries (to detect carotid stenosis) or dissection of the precerebral arteries;
- an electrocardiogram (ECG) and echocardiogram (to identify arrhythmias and resultant clots in the heart which may spread to the brain vessels through the bloodstream);
- a Holter monitor study to identify intermittent abnormal heart rhythms;
- an angiogram of the cerebral vasculature (if a bleed is thought to have originated from an aneurysm or arteriovenous malformation);
- blood tests to determine if blood cholesterol is high, if there is an abnormal tendency to bleed, and if some rarer processes such as homocystinuria might be involved.
For hemorrhagic strokes, a CT or MRI scan with intravascular contrast may be able to identify abnormalities in the brain arteries (such as aneurysms) or other sources of bleeding, and structural MRI if this shows no cause. If this too does not identify an underlying reason for the bleeding, invasive cerebral angiography could be performed but this requires access to the bloodstream with an intravascular catheter and can cause further strokes as well as complications at the insertion site and this investigation is therefore reserved for specific situations. If there are symptoms suggesting that the hemorrhage might have occurred as a result of venous thrombosis, CT or MRI venography can be used to examine the cerebral veins.
It is very important for family members and health care professionals to be aware of natural movements also known as Lazarus sign or Lazarus reflex that can occur on a brain-dead person whose organs have been kept functioning by life support. The living cells that can cause these movements are not living cells from the brain or brain stem, these cells come from the spinal cord. Sometimes these body movements can cause false hope for the family members.
A brain-dead individual has no clinical evidence of brain function upon physical examination. This includes no response to pain and no cranial nerve reflexes. Reflexes include pupillary response (fixed pupils), oculocephalic reflex, corneal reflex, no response to the caloric reflex test, and no spontaneous respirations.
It is important to distinguish between brain death and states that may be difficult to differentiate from brain death, (such as barbiturate overdose, alcohol intoxication, sedative overdose, hypothermia, hypoglycemia, coma, and chronic vegetative states). Some comatose patients can recover to pre-coma or near pre-coma level of functioning, and some patients with severe irreversible neurological dysfunction will nonetheless retain some lower brain functions, such as spontaneous respiration, despite the losses of both cortex and brain stem functionality. Such is the case with anencephaly.
Note that brain electrical activity can stop completely, or drop to such a low level as to be undetectable with most equipment. An EEG will therefore be flat, though this is sometimes also observed during deep anesthesia or cardiac arrest. Although in the United States a flat EEG test is not required to certify death, it is considered to have confirmatory value. In the UK it is not considered to be of value because any continuing activity it might reveal in parts of the brain above the brain stem is held to be irrelevant to the diagnosis of death on the Code of Practice criteria.
The diagnosis of brain death needs to be rigorous, in order to be certain that the condition is irreversible. Legal criteria vary, but in general they require neurological examinations by two independent physicians. The exams must show complete and irreversible absence of brain function (brain stem function in UK), and may include two isoelectric (flat-line) EEGs 24 hours apart (less in other countries where it is accepted that if the cause of the dysfunction is a clear physical trauma there is no need to wait that long to establish irreversibility). The patient should have a normal temperature and be free of drugs that can suppress brain activity if the diagnosis is to be made on EEG criteria.
Also, a radionuclide cerebral blood flow scan that shows complete absence of intracranial blood flow must be considered with other exams – temporary swelling of the brain, particularly within the first 72 hours, can lead to a false positive test on a patient that may recover with more time.
CT angiography is neither required nor sufficient test to make the diagnosis.
While the diagnosis of brain death has become accepted as a basis for the certification of death for legal purposes, it should be clearly understood that it is a very different state from biological death - the state universally recognized and understood as death. The continuing function of vital organs in the bodies of those diagnosed brain dead, if mechanical ventilation and other life-support measures are continued, provides optimal opportunities for their transplantation.
When mechanical ventilation is used to support the body of a brain dead organ donor pending a transplant into an organ recipient, the donor's date of death is listed as the date that brain death was diagnosed.
In some countries (for instance, Spain, Finland, Poland, Wales, Portugal, and France), everyone is automatically an organ donor after diagnosis of death on legally accepted criteria, although some jurisdictions (such as Singapore, Spain, Wales, France, Czech Republic and Portugal) allow opting out of the system. Elsewhere, consent from family members or next-of-kin may be required for organ donation. In New Zealand, Australia, the United Kingdom (excluding Wales) and most states in the United States, drivers are asked upon application if they wish to be registered as an organ donor.
In the United States, if the patient is at or near death, the hospital must notify a transplant organization of the person's details and maintain the patient while the patient is being evaluated for suitability as a donor. The patient is kept on ventilator support until the organs have been surgically removed. If the patient has indicated in an advance health care directive that they do not wish to receive mechanical ventilation or has specified a do not resuscitate order and the patient has also indicated that they wish to donate their organs, some vital organs such as the heart and lungs may not be able to be recovered.
Since lateral medullary syndrome is often caused by a stroke, diagnosis is time dependent. Diagnosis is usually done by assessing vestibular-related symptoms in order to determine where in the medulla that the infarction has occurred. Head Impulsive Nystagmus Test of Skew (HINTS) examination of oculomotor function is often performed, along with computed tomography (CT) or magnetic resonance imaging (MRI) to assist in stroke detection. Standard stroke assessment must be done to rule out a concussion or other head trauma.
A brainstem stroke syndrome is a condition involving a stroke of the brainstem. Because of their location, they often involve impairment both of the cranial nuclei and of the long tracts.
A person may have vertigo, dizziness and severe imbalance without the hallmark of most strokes – weakness on one side of the body. The symptoms of vertigo, dizziness or imbalance usually occur together; dizziness alone is not a sign of stroke. Brainstem stroke can also cause diplopia, slurred speech and decreased level of consciousness. A more serious outcome is locked-in syndrome.
After taking the patient’s history, a thorough neurologic exam is needed to identify focal neurologic deficits, paying attention to the cranial nerve, motor, sensory, and coordination components of the exam. After the history and physical exam, clinicians may move on to laboratory workup and imaging.
Laboratory workup
Laboratory tests should focus on ruling out metabolic conditions that may mimic TIA (e.g. hypoglycemia causing altered mental status), in addition to further evaluating a patient’s risk factors for ischemic events. All patients should receive a complete blood count with platelet count, blood glucose, basic metabolic panel, prothrombin time/international normalized ratio, and activated partial thromboplastin time as part of their initial workup. These tests help with screening for bleeding or hypercoagulable conditions. An electrocardiogram will also be necessary to rule out abnormal heart rhythms such as atrial fibrillation that can predispose patients to clot formation and embolic events. Other lab tests, such as a full hypercoagulable state workup or serum drug screening should be considered based on the clinical situation and factors such as age of the patient and family history. A fasting lipid panel is also appropriate to thoroughly evaluate the patient’s risk for atherosclerotic disease and ischemic events in the future.
Imaging:
According to guidelines from the American Heart Association and American Stroke Association Stroke Council, patients with TIA should have head imaging “within 24 hours of symptom onset, preferably with magnetic resonance imaging, including diffusion sequences”. MRI is a better imaging modality for TIA than computed tomography (CT), as it is better able to pick up both new and old ischemic lesions than CT. CT, however, is more widely available and can be used particularly to rule out intracranial hemorrhage. Diffusion sequences can help further localize the area of ischemia and can serve as prognostic indicators. Presence of ischemic lesions on diffusion weighted imaging has been correlated with a higher risk of stroke after a TIA.
Vessels in the head and neck may also be evaluated to look for atherosclerotic lesions that may benefit from interventions such as carotid endarterectomy. The vasculature can be evaluated through the following imaging modalities: magnetic resonance angiography (MRA), CT angiography (CTA), and carotid ultrasonography/transcranial doppler ultrasonography. Carotid ultrasonography is often used to screen for carotid artery stenosis, as it is more readily available. However, all of the above imaging methods have variable sensitivities and specificities, making it important to supplement one of the imaging methods with another to help confirm the diagnosis (for example: screen for the disease with ultrasonography, and confirm with CTA). Confirming a diagnosis of carotid artery stenosis is important because the treatment for this condition, carotid endarterectomy, can pose significant risk to the patient, including heart attacks and strokes after the procedure. For this reason, the U.S. Preventive Services Task Force (USPSTF) "recommends against screening for asymptomatic carotid artery stenosis in the general adult population". This recommendation is for asymptomatic patients, so it does not necessarily apply to patients with TIAs as these may in fact be a symptom of underlying carotid artery disease (see "Causes and Pathogenesis" above). Therefore, patients who have had a TIA may opt to have a discussion with their clinician about the risks and benefits of screening for carotid artery stenosis, including the risks of surgical treatment of this condition.
Cardiac imaging can be performed if head and neck imaging do not reveal a vascular cause for the patient’s TIA (such as atherosclerosis of the carotid artery or other major vessels of the head and neck). Echocardiography can be performed to identify patent foramen ovale (PFO), valvular stenosis, and atherosclerosis of the aortic arch that could be sources of clots causing TIAs, with transesophageal echocardiography being more sensitive than transthoracic echocardiography in identifying these lesions. Prolonged cardiac rhythm monitoring can be considered to rule out arrhythmias like paroxysmal atrial fibrillation that may lead to clot formation and TIAs, however this should be considered if other causes of TIA have not been found.
Diagnosis of cerebrovascular disease is done by (among other diagnoses):
- clinical history
- physical exam
- neurological examination.
It is important to differentiate the symptoms caused by a stroke from those caused by syncope (fainting) which is also a reduction in cerebral blood flow, almost always generalized, but they are usually caused by systemic hypotension of various origins: cardiac arrhythmias, myocardial infarction, hemorrhagic shock, among others.
Diagnosis of TIA involves a combination of asking the patient questions about their symptoms and medical history, physical exam, and head imaging. History taking includes defining the symptoms and looking for mimicking symptoms as described above. Bystanders can be very helpful in describing the symptoms and giving details about when they started and how long they lasted. The time course (onset, duration, and resolution), precipitating events, and risk factors are particularly important. Finally, a thorough review of symptoms is necessary to rule in or out other items on the differential diagnosis of TIA. These include, but are not limited to:
The outlook for someone with lateral medullary syndrome depends upon the size and location of the area of the brain stem damaged by the stroke. Some individuals may see a decrease in their symptoms within weeks or months. Others may be left with significant neurological disabilities for years after the initial symptoms appeared. However, more than 85% of patients have seen minimal symptoms present at six months from the time of the originatl stroke, and have been able to independently accomplish average daily within a year.
Prognostics factors:
Lower Glasgow coma scale score, higher pulse rate, higher respiratory rate and lower arterial oxygen saturation level is prognostic features of in-hospital mortality rate in acute ischemic stroke.
Typically, tissue plasminogen activator may be administered within three to four-and-a-half hours of stroke onset if the patient is without contraindications (i.e. a bleeding diathesis such as recent major surgery or cancer with brain metastases). High dose aspirin can be given within 48 hours. For long term prevention of recurrence, medical regimens are typically aimed towards correcting the underlying risk factors for lacunar infarcts such as hypertension, diabetes mellitus and cigarette smoking. Anticoagulants such as heparin and warfarin have shown no benefit over aspirin with regards to five year survival.
Patients who suffer lacunar strokes have a greater chance of surviving beyond thirty days (96%) than those with other types of stroke (85%), and better survival beyond a year (87% versus 65-70%). Between 70% and 80% are functionally independent at 1 year, compared with fewer than 50% otherwise.
Occupational Therapy and Physical Therapy interventions are used in the rehabilitation of lacunar stroke. A physiotherapy program will improve joint range of motion of the paretic limb using passive range of motion exercises. When increases in activity are tolerated, and stability improvements are made, patients will progress from rolling to side-lying, to standing (with progressions to prone, quadruped, bridging, long-sitting and kneeling for example) and learn to transfer safely (from their bed to a chair or from a wheel chair to a car for example). Assistance and ambulation aids are used as required as the patient begins walking and lessened as function increases. Furthermore, splints and braces can be used to support limbs and joints to prevent complications such as contractures and spasticity. The rehabilitation healthcare team should also educate the patient and their family on common stroke symptoms and how to manage an onset of stroke. Continuing follow-up with a physician is essential so that the physician may monitor medication dosage and risk factors.
Although the mechanism is not entirely understood, the likelihood of a watershed stroke increases after cardiac surgery. An experiment conducted in a five-year span studied the diagnosis, etiology, and outcome of these postoperative strokes. It was observed that intraoperative decrease in blood pressure may lead to these strokes and patients who have undergone aortic procedures are more likely to have bilateral watershed infarcts. Furthermore, bilateral watershed strokes are associated with poor short-term outcomes and are most reliably observed by diffusion-weighted imaging MRI. Thus future clinical research and practice should focus on the identification of bilateral stroke characteristics. This identification can help discover affected areas and increase correct diagnosis.
Locked-in syndrome can be difficult to diagnose. In a 2002 survey of 44 LIS patients, it took almost 3 months to recognize and diagnose LIS after the patient had suffered the incident (i.e., a stroke or an injury) that had caused his/her LIS. Locked-in syndrome may mimic loss of consciousness in patients, or, in the case that respiratory control is lost, may even resemble death. Patients are also unable to actuate standard motor responses such as withdrawal from pain; as a result, testing often requires making requests of the patient such as blinking or vertical eye movement.
Brain imaging may provide additional indicators of locked-in syndrome, as brain imaging provides clues as to whether or not brain function has been lost. Additionally, an EEG can allow the observation of sleep-wake patterns indicating that the patient is not unconscious but simply unable to move.
Some evidence suggests that magnesium sulfate administered to mothers prior to early preterm birth reduces the risk of cerebral palsy in surviving neonates. Due to the risk of adverse effects treatments may have, it is unlikely that treatments to prevent neonatal strokes or other hypoxic events would be given routinely to pregnant women without evidence that their fetus was at extreme risk or has already suffered an injury or stroke. This approach might be more acceptable if the pharmacologic agents were endogenously occurring substances (those that occur naturally in an organism), such as creatine or melatonin, with no adverse side-effects.
Because of the period of high neuronal plasticity in the months after birth, it may be possible to improve the neuronal environment immediately after birth in neonates considered to be at risk of neonatal stroke. This may be done by enhancing the growth of axons and dendrites, synaptogenesis and myelination of axons with systemic injections of neurotrophins or growth factors which can cross the blood–brain barrier.
The prognosis for pediatric stroke survivors varies. The following are some common outcomes:
- Cerebral Palsy (often Hemiplegic Cerebral Palsy/Hemiplegia)
- Epilepsy
- Vision Loss
- Hearing Loss
In an ischemic stroke, blood supply to part of the brain is decreased, leading to dysfunction of the brain tissue in that area. There are four reasons why this might happen:
1. Thrombosis (obstruction of a blood vessel by a blood clot forming locally)
2. Embolism (obstruction due to an embolus from elsewhere in the body, see below),
3. Systemic hypoperfusion (general decrease in blood supply, e.g., in shock)
4. Venous thrombosis.
Stroke without an obvious explanation is termed "cryptogenic" (of unknown origin); this constitutes 30-40% of all ischemic strokes.
Nanoliposomes are currently being researched for specific drug delivery due to their ph-sensitive and high blood–brain barrier diffusion characteristics. Many advantages of these drugs include:
1. Drugs can be maintained in the active state while encapsulated.
2. Being encapsulated provides direct access to target tissue
3. Prevention of non-specific binding
4. Allows for a high concentration of drug
Due to the fact that acidic environment and low blood flow are prominent characteristic of the penumbra area, liposomal drugs seem to be well suited.
Several specific diagnostic criteria can be used to diagnose vascular dementia, including the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria, the International Classification of Diseases, Tenth Edition (ICD-10) criteria, the National Institute of Neurological Disorders and Stroke criteria, Association Internationale pour la Recherche et l'Enseignement en Neurosciences (NINDS-AIREN) criteria, the Alzheimer's Disease Diagnostic and Treatment Center criteria, and the Hachinski Ischemic Score (after Vladimir Hachinski).
The recommended investigations for cognitive impairment include: blood tests (for anemia, vitamin deficiency, thyrotoxicosis, infection, etc.), chest X-Ray, ECG, and neuroimaging, preferably a scan with a functional or metabolic sensitivity beyond a simple CT or MRI. When available as a diagnostic tool, single photon emission computed tomography (SPECT) and positron emission tomography (PET) neuroimaging may be used to confirm a diagnosis of multi-infarct dementia in conjunction with evaluations involving mental status examination. In a person already having dementia, SPECT appears to be superior in differentiating multi-infarct dementia from Alzheimer's disease, compared to the usual mental testing and medical history analysis. Advances have led to the proposal of new diagnostic criteria.
The screening blood tests typically include full blood count, liver function tests, thyroid function tests, lipid profile, erythrocyte sedimentation rate, C reactive protein, syphilis serology, calcium serum level, fasting glucose, urea, electrolytes, vitamin B-12, and folate. In selected patients, HIV serology and certain autoantibody testing may be done.
Mixed dementia is diagnosed when people have evidence of Alzheimer's disease and cerebrovascular disease, either clinically or based on neuro-imaging evidence of ischemic lesions.
Well-designed clinical trials for stroke treatment in neonates are lacking Recent clinical trials show that therapeutic intervention by brain cooling beginning up to 6 hours after perinatal asphyxia reduces cerebral injury and may improve outcome in term infants, indicating cell death is both delayed and preventable
Pancaspase inhibition and Casp3-selective inhibition have been found to be neuroprotective in neonatal rodents with models of neonatal brain injury, which may lead to pharmacological intervention In a study done by Chauvier, "et al.", it is suggested that a Caspase inhibitor, TRP601, is a candidate for neuroprotective strategy in prenatal brain injury conditions. They found a lack of detectable side effects in newborn rodents and dogs. This may be a useful treatment in combination with hypothermia.
MRI has proven valuable for defining brain injury in the neonate, but animal models are still needed to identify causative mechanisms and to develop neuroprotective therapies. In order to model human fetal or neonatal brain injury, one needs a species in which a similar proportion of brain development occurs in utero, the volume of white to grey matter is similar to the human brain, an insult can be delivered at an equivalent stage of development, the physiological outcome of the insult can be monitored, and neurobehavioral parameters can be tested. Some animals that meet these criteria are sheep, non-human primates, rabbits, spiny mice, and guinea pigs.
Transplantation of neural stem cells and umbilical cord stem cells is currently being trialed in neonatal brain injury, but it is not yet known if this therapy is likely to be successful.
Partial Anterior Circulation Infarct (PACI) is a type of cerebral infarction affecting part of the anterior circulation supplying one side of the brain.
Partial Anterior Circulation Stroke Syndrome (PACS) refers to the symptoms of a patient who clinically appears to have suffered from a partial anterior circulation infarct, but who has not yet had any diagnostic imaging (e.g. CT Scan) to confirm the diagnosis.
It is diagnosed by any one of the following
- 2 out of 3 features of
- Higher dysfunction
- Dysphasia
- Visuospatial disturbances
- Homonymous hemianopia
- Motor and Sensory Defects (>2/3 of face, arm, leg)
- Higher dysfunction alone
- Partial Motor or Sensory Defect
If all of the above symptoms are present, a Total Anterior Circulation Infarct is more likely.
For more information, see stroke.
Midline shift measurements and imaging has multiple applications. The severity of brain damage is determined by the magnitude of the change in symmetry. Another use is secondary screening to determine deviations in brain trauma at different times after a traumatic injury as well as initial shifts immediately after. The severity of shift is directly proportional to the likeliness of surgery having to be performed. MLS also has the aptitude to diagnoses the very pathology that caused it. The MLS measurement can be used to successfully distinguish between a variety of intracranial conditions including acute subdural hematoma, malignant middle cerebral artery infarction, epidural hematoma, subarachnoid hemorrhage, chronic subdural hematoma, infarction, intraventrical hemorrhage, a combination of these symptoms, or the absence of pertinent damage altogether.
Gross examination of the brain may reveal noticeable lesions and damage to blood vessels. Accumulation of various substances such as lipid deposits and clotted blood appear on microscopic views. The white matter is most affected, with noticeable atrophy (tissue loss), in addition to calcification of the arteries. Microinfarcts may also be present in the gray matter (cerebral cortex), sometimes in large numbers.
Although atheroma of the major cerebral arteries is typical in vascular dementia, smaller vessels and arterioles are mainly affected.