Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Step I : Decide the dominant type of movement disorder
Step II : Make differential diagnosis of the particular disorder
Step II: Confirm the diagnosis by lab tests
- Metabolic screening
- Microbiology
- Immunology
- CSF examination
- Genetics
- Imaging
- Neurophysiological tests
- Pharmacological tests
Treatment depends upon the underlying disorder. Movement disorders have been known to be associated with a variety of autoimmune diseases.
Methylphenidate, commonly used to treat ADHD, has been used in conjunction with levodopa to treat hypokinesia in the short term. The two work together to increase dopamine levels in the striatum and prefrontal cortex. Methylphenidate mainly inhibits dopamine and noradrenaline reuptake by blocking presynaptic transporters, and levodopa increases the amount of dopamine, generally improving hypokinesic gait. Some patients, however, have adverse reactions of nausea and headache to the treatment and the long-term effects of the drug treatment still need to be assessed.
Once the reaction to dopaminergic drugs begins to fluctuate in Parkinson’s patients, deep brain stimulation (DBS) of the subthalamic nucleus and medial globus pallidus is often used to treat hypokinesia. DBS, like dopaminergic drugs, initially provides relief, but chronic use causes worse hypokinesia and freezing of gait. Lower-frequency DBS in irregular patterns has been shown to be more effective and less detrimental in treatment.
Posteroventral pallidotomy (PVP) is a specific kind of DBS that destroys a small part of the globus pallidus by scarring the neural tissue, reducing brain activity and therefore tremors and rigidity. PVP is suspected to recalibrate basal ganglia activity in the thalamocortical pathway. PVP in the dominant hemisphere has been reported to disrupt executive function verbal processing abilities, and bilateral PVP may disturb processes of focused attention.
Many akinesia patients also form a linguistic akinesia in which their ability to produce verbal movements mirrors their physical akinesia symptoms, especially after unsuccessful PVP. Patients are usually able to maintain normal levels of fluency, but often stop midsentence, unable to remember or produce a desired word. According to a study of Parkinson's patients with articulatory hypokinesia, subjects with faster rates of speech experienced more problems trying to produce conversational language than those who normally spoke at slower rates.
Anticholinergic drugs are used to control neuroleptic-induced EPS, although akathisia may require beta blockers or even benzodiazepines. If the EPS are induced by an antipsychotic, EPS may be reduced by dose titration or by switching to an atypical antipsychotic, such as aripiprazole, ziprasidone, quetiapine, olanzapine, risperidone, or clozapine. These medications possess an additional mode of action that is believed to negate their effect on the nigrostriatal pathway, which means they are associated with fewer extrapyramidal side-effects than "conventional" antipsychotics (chlorpromazine, haloperidol, etc.), although some research has shown that second generation neuroleptics cause EPS at the same rate as the first generation drugs.
Commonly used medications for EPS are anticholinergic agents such as benztropine (Cogentin), diphenhydramine (Benadryl), and trihexyphenidyl (Artane). Another common course of treatment includes dopamine agonist agents such as pramipexole. These medications reverse the symptoms of extrapyramidal side effects caused by antipsychotics or other drugs that either directly or indirectly inhibit dopaminergic neurotransmission.
Studies are yet to be undertaken on the optimum dosage of the causative drugs to reduce their side effects (extrapyramidal symptoms (EPS)).
One of the most significant problems associated with CBD is the inability to perform a definitive diagnosis while an individual exhibiting the symptoms associated with CBD is still alive. A clinical diagnosis of CBD is performed based upon the specified diagnostic criteria, which focus mainly on the symptoms correlated with the disease. However, this often results in complications as these symptoms often overlap with numerous other neurodegenerative diseases. Frequently, a differential diagnosis for CBD is performed, in which other diseases are eliminated based on specific symptoms that do not overlap. However, some of the symptoms of CBD used in this process are rare to the disease, and thus the differential diagnosis cannot always be used.
Postmortem diagnosis provides the only true indication of the presence of CBD. Most of these diagnoses utilize the Gallyas-Braak staining method, which is effective in identifying the presence of astroglial inclusions and coincidental tauopathy.
The types of imaging techniques that are most prominently utilized when studying and/or diagnosing CBD are:
- magnetic resonance imaging (MRI)
- single-photon emission computed tomography (SPECT)
- fluorodopa positron emission tomography (FDOPA PET)
Developments or improvements in imaging techniques provide the future possibility for definitive clinical diagnosis prior to death. However, despite their benefits, information learned from MRI and SPECT during the beginning of CBD progression tend to show no irregularities that would indicate the presence of such a neurodegenerative disease. FDOPA PET is used to study the efficacy of the dopamine pathway.
Despite the undoubted presence of cortical atrophy (as determined through MRI and SPECT) in individuals experiencing the symptoms of CBD, this is not an exclusive indicator for the disease. Thus, the utilization of this factor in the diagnosis of CBD should be used only in combination with other clinically present dysfunctions.
Accurate diagnosis of these Parkinson-plus syndromes is improved when precise diagnostic criteria are used. Since diagnosis of individual Parkinson-plus syndromes is difficult, the prognosis is often poor. Proper diagnosis of these neurodegenerative disorders is important as individual treatments vary depending on the condition. The nuclear medicine SPECT procedure using I-IBZM, is an effective tool in the establishment of the differential diagnosis between patients with PD and Parkinson-plus syndromes.
Anticholinergic drugs have been reported to be extremely effective in 40% of the patients with the Pisa syndrome. Patients with Pisa syndrome that is resistant to anticholinergic drugs is mostly resolved by the reduction of the administration of the antipsychotic drugs as previously mentioned. While the specific pathology underlying idiopathic Pisa syndrome is unknown, the administration of anticholinergic drugs has provided resolution in known cases.
Due to the condition's rarity, it is frequently misdiagnosed, often as cerebral palsy. This results in patients often living their entire childhood with the condition untreated.
The diagnosis of SS can be made from a typical history, a trial of dopamine medications, and genetic testing. Not all patients show mutations in the GCH1 gene (GTP cyclohydrolase I), which makes genetic testing imperfect.
Sometimes a lumbar puncture is performed to measure concentrations of biopterin and neopterin, which can help determine the exact form of dopamine-responsive movement disorder: early onset parkinsonism (reduced biopterin and normal neopterin), GTP cyclohydrolase I deficiency (both decreased) and tyrosine hydroxylase deficiency (both normal).
In approximately half of cases, a phenylalanine loading test can be used to show decreased conversion from the amino acid phenylalanine to tyrosine. This process uses BH4 as a cofactor.
During a sleep study (polysomnography), decreased twitching may be noticed during REM sleep.
An MRI scan of the brain can be used to look for conditions that can mimic SS (for example, metal deposition in the basal ganglia can indicate Wilson's disease or pantothenate kinase-associated neurodegeneration). Nuclear imaging of the brain using positron emission tomography (PET scan) shows a normal radiolabelled dopamine uptake in SS, contrary to the decreased uptake in Parkinson's disease.
Other differential diagnoses include metabolic disorders (such as GM2 gangliosidosis, phenylketonuria, hypothyroidism, Leigh disease) primarily dystonic juvenile parkinsonism, autosomal recessive early onset parkinsonism with diurnal fluctuation, early onset idiopathic parkinsonism, focal dystonias, dystonia musculorum deformans and dyspeptic dystonia with hiatal hernia.
- Diagnosis - main
- typically referral by GP to specialist Neurological Hospital e.g. National Hospital in London.
- very hard to diagnose as condition is dynamic w.r.t. time-of-day AND dynamic w.r.t. age of patient.
- correct diagnosis only made by a consultant neurologist with a complete 24-hour day-cycle observation(with video/film) at a Hospital i.e. morning(day1)->noon->afternoon->evening->late-night->sleep->morning(day2).
- patient with suspected SS required to walk in around hospital in front of Neuro'-consultant at selected daytime intervals to observe worsening walking pattern coincident with increased muscle tension in limbs.
- throughout the day, reducing leg-gait, thus shoe heels catching one another.
- diurnal affect of condition: morning(fresh/energetic), lunch(stiff limbs), afternoon(very stiff limbs), evening(limbs worsening), bedtime(limbs near frozen).
- muscle tension in thighs/arms: morning(normal), lunch(abnormal), afternoon(very abnormal), evening(bad), bedtime(frozen solid).
- Diagnosis - additional
- lack of self-esteem at school/college/University -> eating disorders in youth thus weight gains.
- lack of energy during late-daytime (teens/adult) -> compensate by over-eating.
Reducing the dosage of the antipsychotic drugs resulted in gradual improvement in the abnormal posture. In some cases, discontinuing the use of those drugs resulted in complete disappearance of the syndrome. The time it took for the improvement and the disappearance of the syndrome depended on the type of drug being administered or the specific cause of the syndrome itself.
The extrapyramidal system regulates posture and skeletal muscle tone. Extrapyramidal symptoms (also called extrapyramidal side effects) get their name because they are symptoms of disorders in this system.
Parkinsonism is a clinical syndrome characterized by tremor, bradykinesia, rigidity, and postural instability. Parkinsonism is found in Parkinson's disease (after which it is named), however a wide range of other causes may lead to this set of symptoms, including some toxins, a few metabolic diseases, and a handful of neurological conditions other than Parkinson's disease.
About 7% of people with parkinsonism have developed their symptoms following treatment with particular medications. Side effect of medications, mainly neuroleptic antipsychotics especially the phenothiazines (such as perphenazine and chlorpromazine), thioxanthenes (such as flupenthixol and zuclopenthixol) and butyrophenones (such as haloperidol), piperazines (such as ziprasidone), and rarely, antidepressants. The incidence of drug-induced parkinsonism increases with age. Drug-induced parkinsonism tends to remain at its presenting level, not progress like Parkinson's disease.
Computed tomography (CT) scans of people with PD usually appear normal. MRI has become more accurate in diagnosis of the disease over time, specifically through iron-sensitive T2* and SWI sequences at a magnetic field strength of at least 3T, both of which can demonstrate absence of the characteristic 'swallow tail' imaging pattern in the dorsolateral substantia nigra. In a meta-analysis, absence of this pattern was 98% sensitive and 95% specific for the disease. Diffusion MRI has shown potential in distinguishing between PD and Parkinson plus syndromes, though its diagnostic value is still under investigation. CT and MRI are also used to rule out other diseases that can be secondary causes of parkinsonism, most commonly encephalitis and chronic ischemic insults, as well as less frequent entities such as basal ganglia tumors and hydrocephalus.
Dopamine-related activity in the basal ganglia can be directly measured with PET and SPECT scans. A finding of reduced dopamine-related activity in the basal ganglia can rule out drug-induced parkinsonism, but reduced basal ganglia dopamine-related activity is seen in both PD and the Parkinson-plus disorders so these scans are not reliable in distinguishing PD from other neurodegenerative causes of parkinsonism.
Differentiating some kinds of atypical Parkinson: Northwest Parkinson Foundation
Before Parkinson's disease is diagnosed, the differential diagnoses include:
- AIDS can sometimes lead to the symptoms of secondary parkinsonism, due to commonly causing dopaminergic dysfunction. Indeed, parkinsonism can be a presenting feature of HIV infection.
- Corticobasal degeneration
- Creutzfeldt–Jakob disease
- Dementia pugilistica or "boxer's dementia" is a condition that occurs in athletes due to chronic brain trauma.
- Diffuse Lewy body disease
- Drug-induced parkinsonism ("pseudoparkinsonism") due to drugs such as antipsychotics, metoclopramide, sertraline, fluoxetine or the toxin MPTP
- Encephalitis lethargica
- Essential tremor, an illness which has some diagnostic overlap with Parkinson's disease
- Orthostatic tremor
- MDMA addiction and frequent use has been linked to Parkonsonism. Several cases have been reported where individuals are diagnosed with the syndrome after taking MDMA.
- Multiple system atrophy
- Pantothenate kinase-associated neurodegeneration, also known as neurodegeneration with brain iron accumulation or Hallervorden-Spatz syndrome
- Parkinson plus syndrome
- Progressive supranuclear palsy
- Toxicity due to substances such as carbon monoxide, carbon disulfide, manganese, paraquat, mercury, hexane, rotenone, Annonaceae, and toluene (inhalant abuse: "huffing")
- Vascular parkinsonism, associated with underlying cerebrovascular disease
- Wilson's disease is a genetic disorder in which an abnormal accumulation of copper occurs. The excess copper can lead to the formation of a copper-dopamine complex, which leads to the oxidation of dopamine to aminochrome. The most common manifestations include bradykinesia, cogwheel rigidity and a lack of balance.
- Paraneoplastic syndrome: neurological symptoms caused by antibodies associated with cancers
- Genetic
- Rapid onset dystonia parkinsonism
- Parkin mutation
- X-linked dystonia parkinsonism
- Autosomal recessive juvenile parkinsonism
Parkinson-plus syndromes are usually more rapidly progressive and less likely to respond to antiparkinsonian medication than PD. However, the additional features of the diseases may respond to medications not used in PD.
Current therapy for Parkinson-plus syndromes is centered around a multidisciplinary treatment of symptoms.
These disorders have been linked to pesticide exposure.
A physician will initially assess for Parkinson's disease with a careful medical history and neurological examination. People may be given levodopa, with any resulting improvement in motor impairment helping to confirm the PD diagnosis. The finding of Lewy bodies in the midbrain on autopsy is usually considered final proof that the person had PD. The clinical course of the illness over time may reveal it is not Parkinson's disease, requiring that the clinical presentation be periodically reviewed to confirm accuracy of the diagnosis.
Other causes that can secondarily produce parkinsonism are stroke and drugs. Parkinson plus syndromes such as progressive supranuclear palsy and multiple system atrophy must be ruled out. Anti-Parkinson's medications are typically less effective at controlling symptoms in Parkinson plus syndromes. Faster progression rates, early cognitive dysfunction or postural instability, minimal tremor or symmetry at onset may indicate a Parkinson plus disease rather than PD itself. Genetic forms with an autosomal dominant or recessive pattern of inheritance are sometimes referred to as familial Parkinson's disease or familial parkinsonism.
Medical organizations have created diagnostic criteria to ease and standardize the diagnostic process, especially in the early stages of the disease. The most widely known criteria come from the UK Queen Square Brain Bank for Neurological Disorders and the U.S. National Institute of Neurological Disorders and Stroke. The Queen Square Brain Bank criteria require slowness of movement (bradykinesia) plus either rigidity, resting tremor, or postural instability. Other possible causes of these symptoms need to be ruled out. Finally, three or more of the following supportive features are required during onset or evolution: unilateral onset, tremor at rest, progression in time, asymmetry of motor symptoms, response to levodopa for at least five years, clinical course of at least ten years and appearance of dyskinesias induced by the intake of excessive levodopa.
When PD diagnoses are checked by autopsy, movement disorders experts are found on average to be 79.6% accurate at initial assessment and 83.9% accurate after they have refined their diagnosis at a follow-up examination. When clinical diagnoses performed mainly by nonexperts are checked by autopsy, average accuracy is 73.8%. Overall, 80.6% of PD diagnoses are accurate, and 82.7% of diagnoses using the Brain Bank criteria are accurate.
A task force of the International Parkinson and Movement Disorder Society (MDS) has proposed diagnostic criteria for Parkinson’s disease as well as research criteria for the diagnosis of prodromal disease, but these will require validation against the more established criteria.
This condition is very rare, only affecting one in two million people. It is more common in females than in males. There are several hundred cases in the United States, 25 known cases in the United Kingdom, and less than that in Australia and New Zealand.
The prognosis is best when identified early and treated aggressively. In these cases NMS is not usually fatal. In previous studies the mortality rates from NMS have ranged from 20%–38%; however, in the last two decades, mortality rates have fallen below 10% due to early recognition and improved management. Re-introduction to the drug that originally caused NMS to develop may also trigger a recurrence, although in most cases it does not.
Memory impairment is a consistent feature of recovery from NMS, and usually temporary, though in some cases, may become persistent.
There is no cure for XDP and medical treatment offers only temporary relief. Some authors have reported benzodiazepines and anticholinergic agents in the early stages of the disease. Botulinum toxin injections have been used to relieve focal dystonia. Deep brain stimulation has shown promise in the few cases treated surgically.
There is no laboratory test for serotonin syndrome. Therefore, diagnosis is by symptom observation and investigation of the patient's history. Several diagnostic criteria have been proposed. The first rigorously evaluated criteria were introduced in 1991 by Harvey Sternbach, a professor of psychiatry at UCLA. Researchers in Australia later developed the Hunter Toxicity Criteria Decision Rules, which have better sensitivity and specificity, 84% and 97%, respectively, when compared with the gold standard of diagnosis by a medical toxicologist. As of 2007, Sternbach's criteria were still the most commonly used.
The most important symptoms for diagnosing serotonin syndrome are tremor, extreme aggressiveness, akathisia, or clonus (spontaneous, inducible and ocular). Physical examination of the patient should include assessment of deep-tendon reflexes and muscle rigidity, the dryness of the mucosa of the mouth, the size and reactivity of the pupils, the intensity of bowel sounds, skin color, and the presence or absence of sweating. The patient's history also plays an important role in diagnosis, investigations should include inquiries about the use of prescription and over-the-counter drugs, illicit substances, and dietary supplements, as all these agents have been implicated in the development of serotonin syndrome. To fulfill the Hunter Criteria, a patient must have taken a serotonergic agent and meet one of the following conditions:
- Spontaneous clonus, or
- Inducible clonus plus agitation or diaphoresis, or
- Ocular clonus plus agitation or diaphoresis, or
- Tremor plus hyperreflexia, or
- Hypertonism plus temperature > plus ocular clonus or inducible clonus
Although all early reported cases occurred in the Philippines, X-linked dystonia parkinsonism has been diagnosed in the US, Canada, and Germany in people of Filipino descent. The prevalence in the Philippines has been estimated at 1/322,000 and as high as 1/4,000 in the province of Capiz's male population. As x-linked recessive disease, the majority of those affected are males with females generally asymptomatic carriers. In the largest described series, the mean age of onset was 39.7 years, the mean duration of illness was 16 years, and the mean age of death was 55.6 years.
Protein function tests that demonstrate a reduce in chorein levels and also genetic analysis can confirm the diagnosis given to a patient. For a disease like this it is often necessary to sample the blood of the patient on multiple occasions with a specific request given to the haematologist to examine the film for acanthocytes. Another point is that the diagnosis of the disease can be confirmed by the absence of chorein in the western blot of the erythrocyte membranes.
Several specific diagnostic criteria can be used to diagnose vascular dementia, including the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria, the International Classification of Diseases, Tenth Edition (ICD-10) criteria, the National Institute of Neurological Disorders and Stroke criteria, Association Internationale pour la Recherche et l'Enseignement en Neurosciences (NINDS-AIREN) criteria, the Alzheimer's Disease Diagnostic and Treatment Center criteria, and the Hachinski Ischemic Score (after Vladimir Hachinski).
The recommended investigations for cognitive impairment include: blood tests (for anemia, vitamin deficiency, thyrotoxicosis, infection, etc.), chest X-Ray, ECG, and neuroimaging, preferably a scan with a functional or metabolic sensitivity beyond a simple CT or MRI. When available as a diagnostic tool, single photon emission computed tomography (SPECT) and positron emission tomography (PET) neuroimaging may be used to confirm a diagnosis of multi-infarct dementia in conjunction with evaluations involving mental status examination. In a person already having dementia, SPECT appears to be superior in differentiating multi-infarct dementia from Alzheimer's disease, compared to the usual mental testing and medical history analysis. Advances have led to the proposal of new diagnostic criteria.
The screening blood tests typically include full blood count, liver function tests, thyroid function tests, lipid profile, erythrocyte sedimentation rate, C reactive protein, syphilis serology, calcium serum level, fasting glucose, urea, electrolytes, vitamin B-12, and folate. In selected patients, HIV serology and certain autoantibody testing may be done.
Mixed dementia is diagnosed when people have evidence of Alzheimer's disease and cerebrovascular disease, either clinically or based on neuro-imaging evidence of ischemic lesions.
Differentiating NMS from other neurological disorders can be very difficult. It requires expert judgement to separate symptoms of NMS from other diseases. Some of the most commonly mistaken diseases are encephalitis, toxic encephalopathy, status epilepticus, heat stroke, and malignant hyperthermia. Due to the comparative rarity of NMS, it is often overlooked and immediate treatment for the syndrome is delayed. Drugs such as cocaine and amphetamine may also produce similar symptoms.
The differential diagnosis is similar to that of hyperthermia, and includes serotonin syndrome. Features which distinguish NMS from serotonin syndrome include bradykinesia, muscle rigidity, and a high white blood cell count.