Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
          
        
Once the diagnosis of polymicrogyria has been established in an individual, the following approach can be used for discussion of prognosis:
A pregnancy history should be sought, with particular regard to infections, trauma, multiple gestations, and other documented problems. Screening for the common congenital infections associated with polymicrogyria with standard TORCH testing may be appropriate. Other specific tests targeting individual neurometabolic disorders can be obtained if clinically suggested.
The following may help in determining a genetic etiology:
Family history
It is important to ask for the presence of neurologic problems in family members, including seizures, cognitive delay, motor impairment, pseudobulbar signs, and focal weakness because many affected family members, particularly those who are older, may not have had MRI performed, even if these problems came to medical attention. In addition, although most individuals with polymicrogyria do present with neurologic difficulties in infancy, childhood, or adulthood, those with mild forms may have no obvious deficit or only minor manifestations, such as a simple lisp or isolated learning disability. Therefore, if a familial polymicrogyria syndrome is suspected, it may be reasonable to perform MRI on relatives who are asymptomatic or have what appear to be minor findings. The presence of consanguinity in a child's parents may suggest an autosomal recessive familial polymicrogyria syndrome.
Physical examination
A general physical examination of the proband may identify associated craniofacial, musculoskeletal, or visceral malformations that could indicate a particular syndrome. Neurologic examination should assess cognitive and mental abilities, cranial nerve function, motor function, deep tendon reflexes, sensory function, coordination, and gait (if appropriate).
Genetic testing
Parents of a proband
- The parents of an affected individual are obligate heterozygotes and therefore carry one mutant allele.
- Heterozygotes (carriers) are asymptomatic.
Sibs of a proband
- At conception, each sibling of an affected individual has a 25% chance of being affected, a 50% chance of being an asymptomatic carrier, and a 25% chance of being unaffected and not a carrier.
- Once an at-risk sibling is known to be unaffected, the risk of his/her being a carrier is 2/3.
- Heterozygotes (carriers) are asymptomatic.
Offspring of a proband
- Offspring of a proband are obligate heterozygotes and will therefore carry one mutant allele.
- In populations with a high rate of consanguinity, the offspring of a person with GPR56-related BFPP and a reproductive partner who is a carrier of GPR56-related BFPP have a 50% chance of inheriting two GPR56 disease-causing alleles and having BFPP and a 50% chance of being carriers.
Other family members of a proband.
- Each sibling of the proband's parents is at a 50% risk of being a carrier
Neuroimaging like MRI is important. However, there was considerable intrafamilial variability regarding neuroimaging, with some individuals showing normal MRI findings. Early individual prognosis of such autosomal recessive cerebellar ataxias is not possible from early developmental milestones, neurological signs, or neuroimaging.
A thorough medical history and physical examination, including a neurological examination, are the first steps in making a diagnosis. This alone may be sufficient to diagnose Bell's Palsy, in the absence of other findings. Additional investigations may be pursued, including blood tests such as ESR for inflammation, and blood sugar levels for diabetes. If other specific causes, such as sarcoidosis or Lyme disease are suspected, specific tests such as angiotensin converting enzyme levels, chest x-ray or Lyme titer may be pursued. If there is a history of trauma, or a tumour is suspected, a CT scan may be used.
Facial nerve paralysis may be divided into supranuclear and infranuclear lesions.
A variety of methods may be used to diagnose axillary nerve palsy. The health practitioner may examine the shoulder for muscle atrophy of the deltoid muscle. Furthermore, a patient can also be tested for weakness when asked to raise the arm. The deltoid extension lag sign test is one way to evaluate the severity of the muscle weakness. During this test, the physician stands behind the patient and uses the patient's wrist to elevate the arm. Then, the patient is told to hold this position without the doctor's assistance. If the patient cannot hold this position on their own and an angular drop occurs, the angular lag is observed as an indicator of axillary nerve palsy. When the shoulder is at its maximum extension, only the posterior area of the deltoid muscle and the axillary nerve are working to raise the arm. Therefore, no other muscles can provide compensation, which allows the test to be an accurate measure of the axillary nerve’s dysfunction.
Additional testing includes electromyography (EMG) and nerve conduction tests. However, these should not be done right after the injury because results will be normal. These tests must be executed weeks after the initial injury and onset of symptoms. An MRI (magnetic resonance imaging) or X-Ray may also be done by a doctor.
EMG &NCV can help to treatment with the diagnosis of the location and severity of the lesion.
Worster-Drought syndrome is a form of congenital suprabulbar paresis that occurs in some children with cerebral palsy. It is caused by inadequate development of the corticobulbar tracts and causes problems with the mouth and tongue including impaired swallowing. A similar syndrome in adults is called anterior opercular syndrome.
A 1986 study of a family in which multiple members had Worster-Drought Syndrome suggested it might be hereditary.
A 2000 review of cases classified Worster-Drought Syndrome as a form of cerebral palsy, caused by early damage to the brain, but identified no obvious causes during gestation or birth and found some families with a history of the condition.
The syndrome was named after Cecil Charles Worster-Drought, the doctor who discovered it in 1956.
Plexopathy symptoms often resemble spinal cord disorders. A neurosurgical consultation is usually undertaken to ensure proper diagnosis, management, and treatment. Patients with chronic symptoms will likely be advised to follow up with outpatient care from either their health care provider or specialist.
NPCA is a syndrome and can have diverse causes. It has a genetic basis and inheritance is considered to be autosomal recessive. However, autosomal dominant variety has also been reported. There may be familial balanced translocation t(8;20)(p22;q13) involved.
The first steps in the evaluation and later management of plexopathy would consist of gathering a medical history and conducting a physical examination by a healthcare clinician. Motor function defect patterns detected within either the upper or lower extremities help with diagnosis of the disorder.
X-rays of the cervical spine, chest, and shoulder are usually ordered if symptoms point to acute Brachial plexopathy. If the physical history reveals a history of diabetes, collagen vascular disease, or symptoms of infection, the physician may order a series of blood tests including a complete blood count (CBC) and a comprehensive metabolic panel (CMP).
Some babies recover on their own; however, some may require specialist intervention.
Neonatal/pediatric neurosurgery is often required for avulsion fracture repair. Lesions may heal over time and function return. Physiotherapeutic care is often required to regain muscle usage.
Although range of motion is recovered in many children under one year in age, individuals who have not yet healed after this point will rarely gain full function in their arm and may develop arthritis.
The three most common treatments for Erb's Palsy are: Nerve transfers (usually from the opposite arm or limb), Sub Scapularis releases and Latissimus Dorsi Tendon Transfers.
Nerve transfers are usually performed on babies under the age of 9 months since the fast development of younger babies increases the effectiveness of the procedure. They are not usually carried out on patients older than this because when the procedure is done on older infants, more harm than good is done and can result in nerve damage in the area where the nerves were taken from. Scarring can vary from faint scars along the lines of the neck to full "T" shapes across the whole shoulder depending on the training of the surgeon and the nature of the transplant.
Subscapularis releases, however, are not time limited. Since it is merely cutting a "Z" shape into the subscapularis muscle to provide stretch within the arm, it can be carried out at almost any age and can be carried out repeatedly on the same arm; however, this will compromise the integrity of the muscle.
Latissimus Dorsi Tendon Transfers involve cutting the Latissimus Dorsi in half horizontally in order to 'pull' part of the muscle around and attach it to the outside of the biceps. This procedure provides external rotation with varying degrees of success. A side effect may be increased sensitivity of the part of the biceps where the muscle will now lie, since the Latissimus Dorsi has roughly twice the number of nerve endings per square inch of other muscles.
Several disorders may appear similar to CBPS and need to be distinguished in the process of diagnosing CBPS. These include pachygyria, double cortex syndrome, and lissencephaly, all of which are classified along with CBPS as neuronal migration disorders. Diagnostic tests for CBPS include electroencephalograms, CT scanning, and magnetic resonance imaging.
In many cases recovery happens spontaneously and no treatment is needed. This spontaneous recovery can occur because distance between the injury location and the deltoid muscle is small. Spontaneous recovery may take as long as 12 months.
In order to combat pain and inflammation of nerves, medication may be prescribed.
Surgery is an option, but it has mixed results within the literature and is usually avoided because only about half of people who undergo surgery see any positive results from it. Some suggest that surgical exploration should be considered if no recovery occurs after 3 to 6 months. Some surgical options include nerve grafting, neurolysis, or nerve reconstruction. Surgery results are typically better for younger patients (under 25) and for nerve grafts less than six centimeters.
For some, recovery does not occur and surgery is not possible. In these cases, most patients’ surrounding muscles can compensate, allowing them to gain a satisfactory range of motion back. Physical therapy or Occupational therapy will help retrain and gain muscle tone back.
Practical surgical procedures used for treating synkinesis are neurolysis and selective myectomy. Neurolysis has been shown to be effective in relieving synkinesis but only temporarily and unfortunately symptoms return much worse than originally. Selective myectomy, in which a synkinetic muscle is selectively resected, is a much more effective technique that can provide permanent relief and results in a low recurrence rate; unfortunately, it also has many post-operative complications that can accompany including edema, hematoma, and ecchymosis. Therefore, surgical procedures are very minimally used by doctors and are used only as last-resort options for patients who do not respond well to non-invasive treatments.
If binocular vision is present and head position is correct, treatment is not obligatory.
Treatment is required for: visual symptoms, strabismus, or incorrect head position.
Acquired cases that have active inflammation of the superior oblique tendon may benefit from local corticosteroid injections in the region of the trochlea.
The goal of surgery is to restore free ocular rotations. Various surgical techniques have been used:
- Harold Brown advocated that the superior oblique tendon be stripped. A procedure named sheathotomy. The results of such a procedure are frequently unsatisfactory because of reformation of scar tissue.
- Tenotomy of the superior oblique tendon (with or with out a tendon spacer) has also been advocated. This has the disadvantage that it frequently produces a superior oblique paresis.
- Weakening of the inferior oblique muscle of the affected eye may be needed to compensate for iatrogenic fourth nerve palsy.
During surgery, a traction test is repeated until the eye rotations are free and the eye is anchored in an elevated adducted position for about two weeks after the surgery. This maneuver is intended to prevent the reformation of scar tissue in the same places. Normalization of head position may occur but restoration of full motility is seldom achieved. A second procedure may be required.
Prosthesis is a synthetic alternative for missing limbs, teeth, and various other body parts. Advances in prosthetic limbs have increased greatly during the twentieth century. The use of new materials such as modern plastics, complex procedures and better pigments have created lighter in weight and more realistic looking artificial limbs. With the advancement of myoelectric prosthetic limbs, patients are able to move their limbs without the use of cords or other devices. The myoelectric limbs can detect electric signals from the nervous system and muscles. They were first used on adults, but now they are being fitted to children.
Patients that receive a loss of limbs due to phocomelia are typically treated with prosthetics. Infants at the age of 6 months are recommended to have a prosthetic mitten fitted; enabling them to get used to the prosthesis. A hook will be added when the child reaches the age of 2 years. Eventually the patient may receive a myoelectric prosthetic limb. Patients are treated in this way due to the lack of understanding at a young age and the absence of necessary tissues and bones to hold the prosthetic limb.
CBPS is commonly treated with anticonvulsant therapy to reduce seizures. Therapies include anticonvulsant drugs, adrenocorticotropic hormone therapy, and surgical therapy, including focal corticectomy and callosotomy. Special education, speech therapy, and physical therapy are also used to help children with intellectual disability due to CBPS.
Primary lymphedema is a form of lymphedema which is not directly attributable to another medical condition.
It can be divided into three forms, depending upon age of onset: congenital lymphedema, lymphedema praecox, and lymphedema tarda.
Congenital lymphedema presents at birth. Lymphedema praecox presents from ages 1 to 35. This type of lymphedema accounts for 77–94% of all cases of primary lymphedema. Lymphedema tarda presents after age 35. This type of lymphedema usually develops as a result of a developmental abnormality being precipitated by some insult such as trauma, illness, or physical immobility. Compared to secondary lymphedema, primary lymphedema is more likely to involve the face, conjunctiva, and genitalia in association with any limbs involved.
It can be familial.
The majority of patients remain symptom free and able to maintain binocularity with only a slight face turn. Amblyopia is uncommon and, where present, rarely dense. This can be treated with occlusion, and any refractive error can also be corrected.
Duane syndrome cannot be cured, as the "missing" cranial nerve cannot be replaced, and traditionally there has been no expectation that surgery will result in any increase in the range of eye movement. Surgical intervention, therefore, has only been recommended where the patient is unable to maintain binocularity, where they are experiencing symptoms, or where they are forced to adopt a cosmetically unsightly or uncomfortable head posture in order to maintain binocularity. The aims of surgery are to place the eye in a more central position and, thus, place the field of binocularity more centrally also, and to overcome or reduce the need for the adoption of an abnormal head posture. Occasionally, surgery is not needed during childhood, but becomes appropriate later in life, as head position changes (presumably due to progressive muscle contracture).
Surgical approaches include:
- Medial rectus recession in the involved eye or both eyes. By weakening the medial rectus muscles this procedure improves the crossed-eye appearance but does not improve outward eye movements (abductions).
- Morad et al. showed improved abduction after modest unilateral medial rectus recession and lateral rectus resection in a subgroup of patients with mild eye retraction and good adduction before surgery.
- Lateral transposition of the vertical muscles described by Rosenbaum has been shown to improve range of movement of the eye. The surgical procedure produces 40-65 degrees of binocular field. Orbital wall fixation of the lateral rectus muscle (muscle is disinserted and reattached to lateral orbital wall) is recommended an effective method to inactivate a lateral rectus muscle in cases of marked anomalous innervation and severe cocontraction.
The severe pain of HNA can be controlled with an anti-inflammatory drug such as prednisone, although it is unknown whether these anti-inflammatory drugs actually slow or stop the nerve degeneration process.
Nerve regeneration after an episode is normal, and in less severe cases a full recovery of the nerves and muscles can be expected. However, in a severe case permanent nerve damage may occur.
Differential diagnosis is rarely difficult in adults. Onset is typically sudden with symptoms of horizontal diplopia. Limitations of eye movements are confined to abduction of the affected eye (or abduction of both eyes if bilateral) and the size of the resulting convergent squint or esotropia is always larger on distance fixation - where the lateral rectii are more active - than on near fixation - where the medial rectii are dominant. Abduction limitations which mimic VIth nerve palsy may result secondary to surgery, to trauma or as a result of other conditions such as myasthenia gravis or thyroid eye disease.
In children, differential diagnosis is more difficult because of the problems inherent in getting infants to cooperate with a full eye movement investigation. Possible alternative diagnosis for an abduction deficit would include:
1. Mobius syndrome - a rare congenital disorder in which both VIth and VIIth nerves are bilaterally affected giving rise to a typically 'expressionless' face.
2. Duane's syndrome - A condition in which both abduction and adduction are affected arising as a result of partial innervation of the lateral rectus by branches from the IIIrd oculomotor cranial nerve.
3. Cross fixation which develops in the presence of infantile esotropia or nystagmus blockage syndrome and results in habitual weakness of lateral rectii.
4. Iatrogenic injury. Abducens nerve palsy is also known to occur with halo orthosis placement.The resultant palsy is identified through loss of lateral gaze after application of the orthosis and is the most common cranial nerve injury associated with this device.
PBP is aggressive and relentless, and there were no treatments for the disease as of 2005. However, early detection of PBP is the optimal scenario in which doctors can map out a plan for management of the disease. This typically involves symptomatic treatments that are frequently used in many lower motor disorders.
Zori–Stalker–Williams syndrome, also known as pectus excavatum, macrocephaly, short stature and dysplastic nails, is a rare autosomal dominant congenital disorder associated with a range of features such as pectus excavatum, macrocephaly and dysplastic nails, familial short stature, developmental delay and distinctive facies. Further signs are known to be associated with this syndrome.
The name originates from the researchers who first defined and noticed the syndrome and its clinical signs.
It is believed that the syndrome is inherited in an autosomal dominant pattern, though there has been no new research undertaken for this rare disease.
Most patients are diagnosed by the age of 10 years and Duane's is more common in girls (60 percent of the cases) than boys (40 percent of the cases). A French study reports that this syndrome accounts for 1.9% of the population of strabismic patients, 53.5% of patients are female, is unilateral in 78% of cases, and the left eye (71.9%) is affected more frequently than the right. Around 10–20% of cases are familial; these are more likely to be bilateral than non-familial Duane syndrome. Duane syndrome has no particular race predilection.