Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Only specialized laboratories can adequately diagnose "Babesia" infection in humans, so "Babesia" infections are considered highly under-reported. It develops in patients who live in or travel to an endemic area or receive a contaminated blood transfusion within the preceding 9 weeks, so this aspect of the medical history is vital. Babesiosis may be suspected when a person with such an exposure history develops persistent fevers and hemolytic anemia. The definitive diagnostic test is the identification of parasites on a Giemsa-stained thin-film blood smear.
So-called "Maltese cross formations" on the blood film are diagnostic (pathognomonic) of babesiosis, since they are not seen in malaria, the primary differential diagnosis. Careful examination of multiple smears may be necessary, since "Babesia" may infect less than 1% of circulating red blood cells, thus be easily overlooked.
Serologic testing for antibodies against "Babesia" (both IgG and IgM) can detect low-level infection in cases with a high clinical suspicion, but negative blood film examinations. Serology is also useful for differentiating babesiosis from malaria in cases where people are at risk for both infections. Since detectable antibody responses require about a week after infection to develop, serologic testing may be falsely negative early in the disease course.
A polymerase chain reaction (PCR) test has been developed for the detection of "Babesia" from the peripheral blood. PCR may be at least as sensitive and specific as blood-film examination in diagnosing babesiosis, though it is also significantly more expensive. Most often, PCR testing is used in conjunction with blood film examination and possibly serologic testing.
Other laboratory findings include decreased numbers of red blood cells and platelets on complete blood count.
In animals, babesiosis is suspected by observation of clinical signs (hemoglobinuria and anemia) in animals in endemic areas. Diagnosis is confirmed by observation of merozoites on thin film blood smear examined at maximum magnification under oil using Romonovski stains (methylene blue and eosin). This is a routine part of the veterinary examination of dogs and ruminants in regions where babesiosis is endemic.
"Babesia canis" and "B. bigemina" are "large "Babesia" species" that form paired merozoites in the erythrocytes, commonly described as resembling "two pears hanging together", rather than the "Maltese cross" of the "small "Babesia" species". Their merozoites are around twice the size of small ones.
Cerebral babesiosis is suspected "in vivo" when neurological signs (often severe) are seen in cattle that are positive for "B. bovis" on blood smear, but this has yet to be proven scientifically. Outspoken red discoloration of the grey matter "post mortem" further strengthens suspicion of cerebral babesiosis. Diagnosis is confirmed "post mortem" by observation of "Babesia"-infected erythrocytes sludged in the cerebral cortical capillaries in a brain smear.
Vaccines against anaplasmosis are available. Carrier animals should be eliminated from flocks. Tick control may also be useful although it can be difficult to implement.
Tender or enlarged inguinal lymph nodes or swelling in the extremities can alert physicians or public health officials to infection.
With appropriate laboratory equipment, microscopic examination of differential morphological features of microfilariae in stained blood films can aid diagnosis—in particular the examination of the tail portion, the presence of a sheath, and the size of the cephalic space. Giemsa staining will uniquely stain "B. malayi" sheath pink. However, blood films can prove difficult given the nocturnal periodicity of some forms of "B. malayi".
PCR based assays are highly sensitive and can be used to monitor infections both in the human and the mosquito vector. However, PCR assays are time-consuming, labor-intensive and require laboratory equipment. Lymphatic filariasis mainly affects the poor, who live in areas without such resources.
The ICT antigen card test is widely used in the diagnosis of "W. bancrofti", but commercial antigens of "B. malayi" have not been historically widely available. However, new research developments have identified a recombinant antigen (BmR1) that is both specific and sensitive in the detection of IgG4 antibodies against "B. malayi" and "B. timori" in ELISA and immunochromatographic rapid dipstick (Brugia Rapid) test. However, it appears that immunoreactivity to this antigen is variable in individuals infected with other filarial nematodes. This research has led to the development of two new rapid immunochromatographic IgG4 cassette tests – WB rapid and panLF rapid – which detect bancroftian filariasis and all three species of lymphatic filariasis, respectively, with high sensitivity and selectivity.
Outbreaks of zoonoses have been traced to human interaction with and exposure to animals at fairs, petting zoos, and other settings. In 2005, the Centers for Disease Control and Prevention (CDC) issued an updated list of recommendations for preventing zoonosis transmission in public settings. The recommendations, developed in conjunction with the National Association of State Public Health Veterinarians, include educational responsibilities of venue operators, limiting public and animal contact, and animal care and management.
Treatment usually involves a prescription of doxycycline (a normal dose would be 100 mg every 12 hours for adults) or a similar class of antibiotics. Oxytetracycline and imidocarb have also been shown to be effective. Supportive therapy such as blood products and fluids may be necessary.
One study using the medicinal plant "Peganum harmala" showed it to have a lifesaving effect on cattle infected with East Coast fever.
The classical treatment with tetracyclines (1970–1990) cannot provide efficiency more than 50%.
Since the early 1990s, buparvaquone is used in bovine theileriosis with remarkable results (90 to 98% recovery).
Other than the buparvaquones, other chemotherapeutic options are the parvaquones, e.g. Clexon. Halofuginone lactate has also been shown to have an 80.5% efficacy against "Theirelia parva parva" infections. The ultimate factor that causes death is pulmonary edema.
In May 2010, a vaccine to protect cattle against East Coast fever reportedly had been approved and registered by the governments of Kenya, Malawi and Tanzania. This consists of cryopreserved sporozoites from crushed ticks, but it is expensive and can cause disease.
Control of the disease relies on control of ticks of domestic animals, particularly disease-resistant ticks. This is a major concern in tropical countries with large livestock populations, especially in the endemic area. Pesticides (acaricides) are applied in dipping baths or spray races, and cattle breeds with good ability to acquire immune resistance to the vector ticks are used.
Treatment of asymptomatic carriers should be considered if parasites are still detected after 3 months. In mild-to-moderate babesiosis, the treatment of choice is a combination of atovaquone and azithromycin. This regimen is preferred to clindamycin and quinine because side effects are fewer. The standard course is 7 to 10 days, but this is extended to at least 6 weeks in people with relapsing disease. Even mild cases are recommended to be treated to decrease the chance of inadvertently transmitting the infection by donating blood. In life-threatening cases, exchange transfusion is performed. In this procedure, the infected red blood cells are removed and replaced with uninfected ones.
Imizol is a drug used for treatment of babesiosis in dogs.
Extracts of the poisonous, bulbous plant "Boophone disticha" are used in the folk medicine of South Africa to treat equine babesiosis. "B. disticha" is a member of the daffodil family Amaryllidaceae and has also been used in preparations employed as arrow poisons, hallucinogens, and in embalming. The plant is rich in alkaloids, some of which display an action similar to that of scopolamine.
The Global Alliance to Eliminate Lymphatic Filariasis was launched by the World Health Organization in 2000 with two primary goals: 1) to interrupt transmission and 2) to alleviate the suffering of affected individuals. Mass drug treatment programs are the main strategy for interrupting parasite transmission, and morbidity management, focusing on hygiene, improves the quality of life of infected individuals.
The mortality of the disease in 1909, as recorded in the British Army and Navy stationed in Malta, was 2%. The most frequent cause of death was endocarditis. Recent advances in antibiotics and surgery have been successful in preventing death due to endocarditis. Prevention of human brucellosis can be achieved by eradication of the disease in animals by vaccination and other veterinary control methods such as testing herds/flocks and slaughtering animals when infection is present. Currently, no effective vaccine is available for humans. Boiling milk before consumption, or before using it to produce other dairy products, is protective against transmission via ingestion. Changing traditional food habits of eating raw meat, liver, or bone marrow is necessary, but difficult to implement. Patients who have had brucellosis should probably be excluded indefinitely from donating blood or organs. Exposure of diagnostic laboratory personnel to "Brucella" organisms remains a problem in both endemic settings and when brucellosis is unknowingly imported by a patient. After appropriate risk assessment, staff with significant exposure should be offered postexposure prophylaxis and followed up serologically for six months. Recently published experience confirms that prolonged and frequent serological follow-up consumes significant resources without yielding much information, and is burdensome for the affected staff, who often fail to comply. The side effects of the usual recommended regimen of rifampicin and doxycycline for three weeks also reduce treatment adherence. As no evidence shows treatment with two drugs is superior to monotherapy, British guidelines now recommend doxycycline alone for three weeks and a less onerous follow-up protocol.
Antibody (Ig) ELISAs are used to detect historical BVDV infection; these tests have been validated in serum, milk and bulk milk samples. Ig ELISAs do not diagnose active infection but detect the presence of antibodies produced by the animal in response to viral infection. Vaccination also induces an antibody response, which can result in false positive results, therefore it is important to know the vaccination status of the herd or individual when interpreting results. A standard test to assess whether virus has been circulating recently is to perform an Ig ELISA on blood from 5–10 young stock that have not been vaccinated, aged between 9 and 18 months. A positive result indicates exposure to BVDV, but also that any positive animals are very unlikely to be PI animals themselves. A positive result in a pregnant female indicates that she has previously been either vaccinated or infected with BVDV and could possibly be carrying a PI fetus, so antigen testing of the newborn is vital to rule this out. A negative antibody result, at the discretion of the responsible veterinarian, may require further confirmation that the animal is not in fact a PI.
At a herd level, a positive Ig result suggests that BVD virus has been circulating or the herd is vaccinated. Negative results suggest that a PI is unlikely however this naïve herd is in danger of severe consequences should an infected animal be introduced. Antibodies from wild infection or vaccination persist for several years therefore Ig ELISA testing is more valuable when used as a surveillance tool in seronegative herds.
Antigen ELISA and rtPCR are currently the most frequently performed tests to detect virus or viral antigen. Individual testing of ear tissue tag samples or serum samples is performed. It is vital that repeat testing is performed on positive samples to distinguish between acute, transiently infected cattle and PIs. A second positive result, acquired at least three weeks after the primary result, indicates a PI animal. rtPCR can also be used on bulk tank milk (BTM) samples to detect any PI cows contributing to the tank. It is reported that the maximum number of contributing cows from which a PI can be detected is 300.
Contact with farm animals can lead to disease in farmers or others that come into contact with infected animals. Glanders primarily affects those who work closely with horses and donkeys. Close contact with cattle can lead to cutaneous anthrax infection, whereas inhalation anthrax infection is more common for workers in slaughterhouses, tanneries and wool mills. Close contact with sheep who have recently given birth can lead to clamydiosis, or enzootic abortion, in pregnant women, as well as an increased risk of Q fever, toxoplasmosis, and listeriosis in pregnant or the otherwise immunocompromised. Echinococcosis is caused by a tapeworm which can be spread from infected sheep by food or water contaminated with feces or wool. Bird flu is common in chickens. While rare in humans, the main public health worry is that a strain of bird flu will recombine with a human flu virus and cause a pandemic like the 1918 Spanish flu. In 2017, free range chickens in the UK were temporarily ordered to remain inside due to the threat of bird flu. Cattle are an important reservoir of cryptosporidiosis and mainly affects the immunocompromised.
Definite diagnosis of brucellosis requires the isolation of the organism from the blood, body fluids, or tissues, but serological methods may be the only tests available in many settings. Positive blood culture yield ranges between 40% and 70% and is less commonly positive for "B. abortus" than "B. melitensis" or "B. suis". Identification of specific antibodies against bacterial lipopolysaccharide and other antigens can be detected by the standard agglutination test (SAT), rose Bengal, 2-mercaptoethanol (2-ME), antihuman globulin (Coombs’) and indirect enzymelinked immunosorbent assay (ELISA). SAT is the most commonly used serology in endemic areas. An agglutination titre greater than 1:160 is considered significant in nonendemic areas and greater than 1:320 in endemic areas. Due to the similarity of the O polysaccharide of "Brucella" to that of various other Gram-negative bacteria (e.g. "Francisella tularensis", "Escherichia coli", "Salmonella urbana", "Yersinia enterocolitica", "Vibrio cholerae", and "Stenotrophomonas maltophilia") the appearance of cross-reactions of class M immunoglobulins may occur. The inability to diagnose "B. canis" by SAT due to lack of cross-reaction is another drawback. False-negative SAT may be caused by the presence of blocking antibodies (the prozone phenomenon) in the α2-globulin (IgA) and in the α-globulin (IgG) fractions. Dipstick assays are new and promising, based on the binding of "Brucella" IgM antibodies, and found to be simple, accurate, and rapid. ELISA typically uses cytoplasmic proteins as antigens. It measures IgM, IgG, and IgA with better sensitivity and specificity than the SAT in most recent comparative studies. The commercial Brucellacapt test, a single-step immunocapture assay for the detection of total anti-"Brucella" antibodies, is an increasingly used adjunctive test when resources permit. PCR is fast and should be specific. Many varieties of PCR have been developed (e.g. nested PCR, realtime PCR and PCR-ELISA) and found to have superior specificity and sensitivity in detecting both primary infection and relapse after treatment. Unfortunately, these have yet to be standardized for routine use, and some centres have reported persistent PCR positivity after clinically successful treatment, fuelling the controversy about the existence of prolonged chronic brucellosis. Other laboratory findings include normal peripheral white cell count, and occasional leucopenia with relative lymphocytosis. The serum biochemical profiles are commonly normal.
Diagnosis of BMCF depends on a combination of history and symptoms, histopathology and detection in the blood or tissues of viral antibodies by ELISA or of viral DNA by PCR. The characteristic histologic lesions of MCF are lymphocytic arteritis with necrosis of the blood vessel wall and the presence of large T lymphocytes mixed with other cells. The similarity of MCF clinical signs to other enteric diseases, for example blue tongue, mucosal disease and foot and mouth make laboratory diagnosis of MCF important. The world organisation for animal health recognises histopathology as the definitive diagnostic test, but laboratories have adopted other approaches with recent developments in molecular virology. No vaccine has as yet been developed.
The most frequent clinical sign following "B. suis" infection is abortion in pregnant females, reduced milk production, and infertility. Cattle can also be transiently infected when they share pasture or facilities with infected pigs, and "B. suis" can be transmitted by cow’s milk.
Swine also develop orchitis (swelling of the testicles), lameness (movement disability), hind limb paralysis, or spondylitis (inflammation in joints).
Because "B. suis" is facultative and intracellular, and is able to adapt to environmental conditions in the macrophage, treatment failure and relapse rates are high. The only effective way to control and eradicate zoonosis is by vaccination of all susceptible hosts and elmination of infected animals. The "Brucella abortus" (rough LPS "Brucella") vaccine, developed for bovine brucellosis and licensed by the USDA Animal Plant Health Inspection Service, has shown protection for some swine and is also effective against "B. suis" infection, but currently no approved vaccine for swine brucellosis is available.
Mortality can be up to 100%, with death occurring around 18–30 days after the initial attachment of infected ticks, because the incubation required is around 10–25 days, and the parasite spreads quickly and is rather aggressive.
Clinical signs for diagnosis include, but are not limited to, fever and enlarged lymph nodes near the tick bite(s). Smears and stains can also be done to check for the parasite. Schizonts (meronts, or segmentors) can be found in infected lymphocytes. Pathology includes anorexia, dyspnea, corneal opacity, nasal discharge, frothy nasal discharge, diarrhea, pulmonary edema, leukopenia, and anemia. Endemic cattle given medication sometimes recover to varying degrees, or death follows due to blocked capillaries and parasites infecting the central nervous system. Cattle that are endemic and manage to survive, tend to be carriers.
A form of East Coast fever called corridor disease is observed when the organism is transmitted from the African buffalo to cattle. Another form, called January disease, only occurs over the winter months in Zimbabwe due to the tick lifecycle.
For diagnosis, "post mortem" findings are characteristic and mainly include damage to the lymphoid and respiratory systems.
The important factors for successful prevention of GBS-EOD using IAP and the universal screening approach are:
- Reach most pregnant women for antenatal screens
- Proper sample collection
- Using an appropriate procedure for detecting GBS
- Administering a correct IAP to GBS carriers
Most cases of GBS-EOD occur in term infants born to mothers who screened negative for GBS colonization and in preterm infants born to mothers who were not screened, though some false-negative results observed in the GBS screening tests can be due to the test limitations and to the acquisition of GBS between the time of screening and delivery. These data show that improvements in specimen collection and processing methods for detecting GBS are still necessary in some settings. False-negative screening test, along with failure to receive IAP in women delivering preterm with unknown GBS colonization status, and the administration of inappropriate IAP agents to penicillin-allergic women account for most missed opportunities for prevention of cases of GBS-EOD.
GBS-EOD infections presented in infants whose mothers had been screened as GBS culture-negative are particularly worrying, and may be caused by incorrect sample collection, delay in processing the samples, incorrect laboratory techniques, recent antibiotic use, or GBS colonization after the screening was carried out.
No current culture-based test is both accurate enough and fast enough to be recommended for detecting GBS once labour starts. Plating of swab samples requires time for the bacteria to grow, meaning that this is unsuitable as an intrapartum point-of-care test.
Alternative methods to detect GBS in clinical samples (as vaginorectal swabs) rapidly have been developed, such are the methods based on nucleic acid amplification tests, such as polymerase chain reaction (PCR) tests, and DNA hybridization probes. These tests can also be used to detect GBS directly from broth media, after the enrichment step, avoiding the subculture of the incubated enrichment broth to an appropriate agar plate.
Testing women for GBS colonization using vaginal or rectal swabs at 35–37 weeks of gestation and culturing them in enriched media is not as rapid as a PCR test that would check whether the pregnant woman is carrying GBS at delivery. And PCR tests, allow starting IAP on admission to the labour ward in those women in whom it is not known if they are GBS carriers or not. PCR testing for GBS carriage could, in the future, be sufficiently accurate to guide IAP. However, the PCR technology to detect GBS must be improved and simplified to make the method cost-effective and fully useful as point-of-care testing]] to be carried out in the labour ward (bedside testing). These tests still cannot replace antenatal culture for the accurate detection of GBS carriers.
Diagnosis of paravaccinia virus will often come from Polymerase chain reaction screening ordered by their physician. However, due to how common paravaccinia virus is in rural areas, individuals typically do not seek professional help in diagnosis. Instead individuals may refer to people with local knowledge of the cattle in their area such as ranchers, or veterinarians who have some familiarity with the infections in the region.
Lesions of paravaccinia virus will clear up with little to no scaring after 4 to 8 weeks. An antibiotic may be prescribed by a physician to help prevent bacterial infection of the lesion area. In rare cases, surgical removal of the lesions can be done to help increase rate of healing, and help minimize risk of bacterial or fungal infection. Upon healing, no long term side effects have been reported.
The number of diagnosed cases of human louse infestations (or pediculosis) has increased worldwide since the mid-1960s, reaching hundreds of millions annually. There is no product or method which assures 100% destruction of the eggs and hatched lice after a single treatment. However, there are a number of treatment methods that can be employed with varying degrees of success. These methods include chemical treatments, natural products, combs, shaving, hot air, silicone-based lotions, and ethanol (ethyl alcohol).
The pharmacological treatment of pediculosis include the use of crotamiton applied twice at 24 hour interval and washed off day after that. Benzyl benzoate also can be used when combined with lindane, it is applied once and then washed off after 24 hours.
Bovine malignant catarrhal fever (BMCF) is a fatal lymphoproliferative disease caused by a group of ruminant gamma herpes viruses including Alcelaphine gammaherpesvirus 1 (AlHV-1) and Ovine gammaherpesvirus 2 (OvHV-2) These viruses cause unapparent infection in their reservoir hosts (sheep with OvHV-2 and wildebeest with AlHV-1), but are usually fatal in cattle and other ungulates such as deer, antelope, and buffalo.
BMCF is an important disease where reservoir and susceptible animals mix. There is a particular problem with Bali cattle in Indonesia, bison in the US and in pastoralist herds in Eastern and Southern Africa.
Disease outbreaks in cattle are usually sporadic although infection of up to 40% of a herd has been reported. The reasons for this are unknown. Some species appear to be particularly susceptible, for example Pére Davids deer, Bali cattle and bison, with many deer dying within 48 hours of the appearance of the first symptoms and bison within three days. In contrast, post infection cattle will usually survive a week or more.
Cattle infested with bovine pediculosis are generally treated chemically, by drugs like ivermectin and cypermethrin.
MAP is capable of causing Johne's-like symptoms in humans, though difficulty in testing for MAP infection presents a diagnostic hurdle.
Clinical similarities are seen between Johne's disease in ruminants and inflammatory bowel disease in humans, and because of this, some researchers contend the organism is a cause of Crohn's disease. However, epidemiologic studies have provided variable results; in certain studies, the organism (or an immune response directed against it) has been much more frequently found in patients with Crohn's disease than asymptomatic people.