Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
When diagnosing osteoblastoma, the preliminary radiologic workup should consist of radiography of the site of the patient's pain. However, computed tomography (CT) is often necessary to support clinical and plain radiographic findings suggestive of osteoblastoma and to better define the margins of the lesion for potential surgery. CT scans are best used for the further characterization of the lesion with regard to the presence of a nidus and matrix mineralization. MRI aids in detection of nonspecific reactive marrow and soft tissue edema, and MRI best defines soft tissue extension, although this finding is not typical of osteoblastoma. Bone scintigraphy (bone scan) demonstrates abnormal radiotracer accumulation at the affected site, substantiating clinical suspicion, but this finding is not specific for osteoblastoma. In many patients, biopsy is necessary for confirmation.
Chondromyxoid fibromas can share characteristics with chondroblastomas with regards to histologic and radiographic findings. However they more commonly originate from the metaphysis, lack calcification and have a different histologic organization pattern. Other differential diagnoses for chondroblastoma consist of giant cell tumors, bone cysts, eosinophilic granulomas, clear cell chondrosarcomas, and enchondromas (this list is not exhaustive).
Chondroid differentiation is a common feature of chondroblastoma. A typical histological appearance consists of a combination of oval mononuclear and multi-nucleated osteoclast-type giant cells. However this is not a prerequisite for diagnosis, as cells with epithelioid characteristics have been observed in lesions of the skull and facial bones. A "chicken-wire" appearance is characteristic of chondroblastoma cells and is the result of dystrophic calcification that may surround individual cells. Although, calcification may not be present and is not a prerequisite for diagnosis. Mitotic figures can be observed in chondroblastoma tissue but are not considered atypical in nature, and therefore, should not be viewed as a sign of a more serious pathology. There is no correlation between mitotic activity and location of the lesion. Furthermore, the presence of atypical cells is rare and is not associated with malignant chondroblastoma. There are no discernible histological differences observed when comparing the aggressive form of chondroblastoma that can cause recurrence or metastases with its less aggressive, benign, counterpart.
The first route of treatment in Osteoblastoma is via medical means. Although necessary, radiation therapy (or chemotherapy) is controversial in the treatment of osteoblastoma. Cases of postirradiation sarcoma have been reported after use of these modalities. However, it is possible that the original histologic diagnosis was incorrect and the initial lesion was an osteosarcoma, since histologic differentiation of these two entities can be very difficult.
The alternative means of treatment consists of surgical therapy. The treatment goal is complete surgical excision of the lesion. The type of excision depends on the location of the tumor.
- For stage 1 and 2 lesions, the recommended treatment is extensive intralesional excision, using a high-speed burr. Extensive intralesional resections ideally consist of removal of gross and microscopic tumor and a margin of normal tissue.
- For stage 3 lesions, wide resection is recommended because of the need to remove all tumor-bearing tissue. Wide excision is defined here as the excision of tumor and a circumferential cuff of normal tissue around the entity. This type of complete excision is usually curative for osteoblastoma.
In most patients, radiographic findings are not diagnostic of osteoblastoma; therefore, further imaging is warranted. CT examination performed with the intravenous administration of contrast agent poses a risk of an allergic reaction to contrast material.
The lengthy duration of an MRI examination and a history of claustrophobia in some patients are limiting the use of MRI. Although osteoblastoma demonstrates increased radiotracer accumulation, its appearance is nonspecific, and differentiating these lesions from those due to other causes involving increased radiotracer accumulation in the bone is difficult. Therefore, bone scans are useful only in conjunction with other radiologic studies and are not best used alone.
Recurrence rate of solid form of tumour is lower than classic form.
They are benign lesions and malignant degeneration is rare. They are usually treated with curettage which however have a high recurrence rate of 25%. As such if an en-bloc resection is possible this is advisable
Plain film
often seen as a lobulated, eccentric radiolucent lesion
long axis parallel to long axis of long bone
no periosteal reaction (unless a complicating fracture present)
geographic bone destruction: almost 100%
well defined sclerotic margin: 86%
there can be presence of septations (pseudotrabeculation): 57% 2
there can be presence of matrix calcification in a small proportion of cases: 12.5%1
MRI
MR features are often not particularly specific. Signal characteristics include
T1 - low signal
T1 C+ (Gd) -
the majority (~70%) tend to show peripheral nodular enhancement
~ 30% diffuse contrast enhancement and this can be either homogeneous or heterogeneous 19
T2 - high signal
Bone scan
A scintigraphic "doughnut sign" has been described in this tumour type 11. However, this is very non-specific and can be found in a plethora of other bone lesions.
Following conditions are excluded before diagnosis can be confirmed:
- Unicameral bone cyst
- Giant cell tumor
- Telangiectatic osteosarcoma
- Secondary aneurysmal bone cyst
Treatment is varied and depends on the site and extent of tumor involvement, site(s) of metastasis, and specific individual factors. Surgical resection, radiotherapy, and chemotherapy have all been used to treat these masses, although studies on survival have yet to be conducted to delineate various treatment regimens.
Recurrence is common, although the recurrence rates for block resection followed by bone graft are lower than those of enucleation and curettage. Follicular variants appear to recur more than plexiform variants. Unicystic tumors recur less frequently than "non-unicystic" tumors. Persistent follow-up examination is essential for managing ameloblastoma. Follow up should occur at regular intervals for at least 10 years. Follow up is important, because 50% of all recurrences occur within 5 years postoperatively. Recurrence within a bone graft (following resection of the original tumor) does occur, but is less common. Seeding to the bone graft is suspected as a cause of recurrence. The recurrences in these cases seem to stem from the soft tissues, especially the adjacent periosteum. Recurrence has been reported to occur as many as 36 years after treatment.
To reduce the likelihood of recurrence within grafted bone, meticulous surgery with attention to the adjacent soft tissues is required.
Treatment consists of wide resection or amputation. Metastases are rare at presentation but may occur in up to 30% of patients during the disease course. Prognosis is excellent, with overall survival of 85% at 10 years, but is lower when wide surgical margins cannot be obtained. This tumor is insensitive to radiation so chemotherapy is not typically used unless the cancer has metastasized to the lungs or other organs.
Complete surgical excision is the treatment of choice, associated with an excellent long term clinical outcome.
Imaging studies such as Computerized Tomography (CT) and Magnetic Resonance Imaging (MRI) can aid diagnosis. Medulloepithelioma appears isodense or hypodense with variable heterogeneity and calcification on non-contrast CT scan, and enhances with contrast. This radiographical finding is consistent with a primitive neuroectodermal tumour, especially in children. Blood studies and imaging studies of the abdomen may be used to detect metastases.
Needle aspiration biopsy can be used to aid diagnosis. Definitive diagnosis requires histopathological examination of surgically excised tumour tissues.
Histologically, medulloepithelioma resemble a primitive neural tube and with neuronal, glial and mesenchymal elements. Flexner-Wintersteiner rosettes may also be observed.
Immunohistochemically, neural tube-like structures are vimentin positive in the majority of medulloepitheliomas. Poorly differentiated medulloepitheliomas are vimentin negative.
Radiologically
- Odontogenic Myxoma
- Ameloblastoma
- Central Giant Cell Granuloma
- Adenomatoid odontogenic tumor
Histologically
- Orthokeratocyst
- Radicular cyst (particularly if the OKC is very inflamed)
- Unicystic ameloblastoma
It is important to separate hiberoma from adult rhabdomyoma, a granular cell tumor and a true liposarcoma.
A chondroma is a benign cartilaginous tumor, which is encapsulated with a lobular growing pattern.
Tumor cells (chondrocytes, cartilaginous cells) resemble normal cells and produce the cartilaginous matrix (amorphous, basophilic material).
Characteristic features of this tumor include the vascular axes within the tumor, which make the distinction with normal hyaline cartilage.
Based upon location, a chondroma can be described as an enchondroma or ecchondroma.
- enchondroma - tumor grows within the bone and expands it.
- ecchondroma - grows outward from the bone and this is rare.
Treatment
- best left alone
- if it causes fractures (enchondroma) or is unsightly it should be removed by curettage and the defect filled with bone graft.
The definitive diagnosis is by histologic analysis, i.e. and examination under the microscope.
Under the microscope, OKCs vaguely resemble keratinized squamous epithelium; however, they lack rete ridges and often have an artifactual separation from their basement membrane.
On a CT scan, The radiodensity of a keratocystic odontogenic tumour is about 30 Hounsfield units, which is about the same as ameloblastomas. Yet, ameloblastomas show more bone expansion and seldom show high density areas.
It is important to exclude a tumor which is directly extending into the ear canal from the parotid salivary gland, especially when dealing with an adenoid cystic or mucoepidermoid carcinoma. This can be eliminated by clinical or imaging studies. Otherwise, the histologic differential diagnosis includes a ceruminous adenoma (a benign ceruminous gland tumor) or a neuroendocrine adenoma of the middle ear (middle ear adenoma).
While chemotherapy, radiation therapy, curettage and liquid nitrogen have been effective in some cases of ameloblastoma, surgical resection or enucleation remains the most definitive treatment for this condition. In a detailed study of 345 patients, chemotherapy and radiation therapy seemed to be contraindicated for the treatment of ameloblastomas. Thus, surgery is the most common treatment of this tumor. Because of the invasive nature of the growth, excision of normal tissue near the tumor margin is often required. Some have likened the disease to basal cell carcinoma (a skin cancer) in its tendency to spread to adjacent bony and sometimes soft tissues without metastasizing. While rarely not a cancer that actually invades adjacent tissues, ameloblastoma is suspected to spread to adjacent areas of the jaw bone via marrow space. Thus, wide surgical margins that are clear of disease are required for a good prognosis. This is very much like surgical treatment of cancer. Often, treatment requires excision of entire portions of the jaw.
Radiation is ineffective in many cases of ameloblastoma. There have also been reports of sarcoma being induced as the result of using radiation to treat ameloblastoma. Chemotherapy is also often ineffective. However, there is some controversy regarding this and some indication that some ameloblastomas might be more responsive to radiation that previously thought.
Age and gender have an effect on the incidence of these lesions; they are more prevalent in women than men (though still common in both genders), and they appear more frequently with age. Due to the standard of medical care and screening in developed countries, it is increasingly rare for primary hyperparathyroidism to present with accompanying bone disease. This is not the case in less developed nations, however, and the two conditions are more often seen together.
The clinical and pathology differential are different. From a pathology perspective, an endolymphatic sac tumor needs to be separated from metastatic renal cell carcinoma, metastatic thyroid papillary carcinoma, middle ear adenoma, paraganglioma, choroid plexus papilloma, middle ear adenocarcinoma, and ceruminous adenoma.
Vascular tissue neoplasms, like neoplasms of all tissues, are classified to benign and malignant ones, according to their biological behavior.
Wide excision is the treatment of choice, although attempting to preserve hearing. Based on the anatomic site, it is difficult to completely remove, and so while there is a good prognosis, recurrences or persistence may be seen. There is no metastatic potential. Patients who succumb to the disease, usually do so because of other tumors within the von Hippel-Lindau complex rather than from this tumor.
From a pathology perspective, several tumors need to be considered in the differential diagnosis, including paraganglioma, ceruminous adenoma, metastatic adenocarcinoma, and meningioma.
A vascular tissue neoplasm is a tumor arising from endothelial cells, the cells that line the wall of blood vessels and lymphatic vessels, as well as the heart. Vascular tissue neoplasms is a group containing tumors with the same tissue origin; in other words, it denotes histological classification, rather than anatomic (i.e. where in the body the neoplasm is found) or clinical one. They can occur everywhere in the body where vessels are to be found.