Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
X-rays show lucency of the ossification front in juveniles. In older people, the lesion typically appears as an area of osteosclerotic bone with a radiolucent line between the osteochondral defect and the epiphysis. The visibility of the lesion depends on its location and on the amount of knee flexion used. Harding described the lateral X-ray as a method to identify the site of an OCD lesion.
Magnetic resonance imaging (MRI) is useful for staging OCD lesions, evaluating the integrity of the joint surface, and distinguishing normal variants of bone formation from OCD by showing bone and cartilage edema in the area of the irregularity. MRI provides information regarding features of the articular cartilage and bone under the cartilage, including edema, fractures, fluid interfaces, articular surface integrity, and fragment displacement. A low T1 and high T2 signal at the fragment interface is seen in active lesions. This indicates an unstable lesion or recent microfractures. While MRI and arthroscopy have a close correlation, X-ray films tend to be less inductive of similar MRI results.
Computed tomography (CT) scans and Technetium-99m bone scans are also sometimes used to monitor the progress of treatment. Unlike plain radiographs (X-rays), CT scans and MRI scans can show the exact location and extent of the lesion. Technetium bone scans can detect regional blood flow and the amount of osseous uptake. Both of these seem to be closely correlated to the potential for healing in the fragment.
OCD is classified by the progression of the disease in stages.
There are two main staging classifications used; one is determined by MRI diagnostic imaging while the other is determined arthroscopically. However, both stagings represent the pathological conditions associated with OCD's natural progression.
While the arthroscopic classification of bone and cartilage lesions is considered standard, the Anderson MRI staging is the main form of staging used in this article. Stages I and II are stable lesions. Stages III and IV describe unstable lesions in which a lesion of the cartilage has allowed synovial fluid between the fragment and bone.
X-rays of the hip may suggest and/or verify the diagnosis. X-rays usually demonstrate a flattened, and later fragmented, femoral head. A bone scan or MRI may be useful in making the diagnosis in those cases where X-rays are inconclusive. Usually, plain radiographic changes are delayed 6 weeks or more from clinical onset, so bone scintigraphy and MRI are done for early diagnosis. MRI results are more accurate, i.e. 97 to 99% against 88 to 93% in plain radiography. If MRI or bone scans are necessary, a positive diagnosis relies upon patchy areas of vascularity to the capital femoral epiphysis (the developing femoral head).
Despite patient-to-patient variability and the diversity of radiographic findings, the X-ray is diagnostic in infantile hypophosphatasia. Skeletal defects are found in nearly all patients and include hypomineralization, rachitic changes, incomplete vertebrate ossification and, occasionally, lateral bony spurs on the ulnae and fibulae.
In newborns, X-rays readily distinguish hypophosphatasia from osteogenesis imperfecta and congenital dwarfism. Some stillborn skeletons show almost no mineralization; others have marked undermineralization and severe rachitic changes. Occasionally there can be peculiar complete or partial absence of ossification in one or more vertebrae. In the skull, individual membranous bones may calcify only at their centers, making it appear that areas of the unossified calvarium have cranial sutures that are widely separated when, in fact, they are functionally closed. Small protrusions (or "tongues") of radiolucency often extend from the metaphyses into the bone shaft.
In infants, radiographic features of hypophosphatasia are striking, though generally less severe than those found in perinatal hypophosphatasia. In some newly diagnosed patients, there is an abrupt transition from relatively normal-appearing diaphyses to uncalcified metaphases, suggesting an abrupt metabolic change has occurred. Serial radiography studies can reveal the persistence of impaired skeletal mineralization (i.e. rickets), instances of sclerosis, and gradual generalized demineralization.
In adults, X-rays may reveal bilateral femoral pseudofractures in the lateral diaphysis. These pseudofractures may remain for years, but they may not heal until they break completely or the patient receives intramedullary fixation. These patients may also experience recurrent metatarsal fractures.
The symptom that best characterizes hypophosphatasia is low serum activity of alkaline phosphatase enzyme (ALP). In general, lower levels of enzyme activity correlate with more severe symptoms. The decrease in ALP activity leads to an increase in pyridoxal 5’-phosphate (PLP) in the blood, and correlates with disease severity. Urinary inorganic pyrophosphate (PPi) levels are elevated in most hypophosphatasia patients and, although it remains only a research technique, this increase has been reported to accurately detect carriers of the disease. In addition, most patients have an increased level of urinary phosphoethanolamine (PEA). Tests for serum ALP levels are part of the standard comprehensive metabolic panel (CMP) that is used in routine exams.
In the early stages, bone scintigraphy and MRI are the preferred diagnostic tools.
X-ray images of avascular necrosis in the early stages usually appear normal. In later stages it appears relatively more radio-opaque due to the nearby living bone becoming resorbed secondary to reactive hyperemia. The necrotic bone itself does not show increased radiographic opacity, as dead bone cannot undergo bone resorption which is carried out by living osteoclasts. Late radiographic signs also include a radiolucency area following the collapse of subchondral bone (crescent sign) and ringed regions of radiodensity resulting from saponification and calcification of marrow fat following medullary infarcts.
A variety of methods may be used to treat the most common being the total hip replacement (THR). However, THRs have a number of downsides including long recovery times and short life spans (of the hip joints). THRs are an effective means of treatment in the older population; however, in younger people they may wear out before the end of a person's life.
Other technicques such as metal on metal resurfacing may not be suitable in all cases of avascular necrosis; its suitability depends on how much damage has occurred to the femoral head. Bisphosphonates which reduces the rate of bone breakdown may prevent collapse (specifically of the hip) due to AVN.
The term osteochondrosis has been used to describe a wide range of lesions among different species. There are different types of the prognosis: latens, which is a lesion restricted to epiphyseal cartilage, manifesta, a lesion paired with a delay in endochondral ossification, and dissecans which is a cleft formation in the articular cartilage.
The prognosis for these conditions is very variable, and depends both on the anatomic site and on the time at which it is detected. In some cases of osteochondrosis, such as Sever's disease and Freiberg's infraction, the involved bone may heal in a relatively normal shape and leave the patient asymptomatic. On the contrary, Legg-Calvé-Perthes disease frequently results in a deformed femoral head that leads to arthritis and the need for joint replacement.
Children younger than 6 have the best prognosis, since they have time for the dead bone to revascularize and remodel, with a good chance that the femoral head will recover and remain spherical after resolution of the disease. Children who have been diagnosed with Perthes' disease after the age of 10 are at a very high risk of developing osteoarthritis and coxa magna. When an LCP disease diagnosis occurs after age 8, a better outcome results with surgery rather than nonoperative treatments. Shape of femoral head at the time when Legg-Calve Perthes disease heals is the most important determinant of risk for degenerative arthritis; hence, the shape of femoral head and congruence of hip are most useful outcome measures.
If the diver has not been exposed to excessive depth and decompression and presents as DON, there may be a predisposition for the condition. Diving should be restricted to shallow depths. Divers who have suffered from DON are at increased risk of future fracture of a juxta-articular lesion during a dive, and may face complications with future joint replacements. Because of the young age of the population normally affected, little data is available regarding joint replacement complications.
There is the potential for worsening of DON for any diving where there might be a need for decompression, experimental or helium diving. Physically stressful diving should probably be restricted, both in sport diving and work diving due to the possibility of unnecessary stress to the joint. Any diving should be less than 40 feet/12 meters. These risks are affected by the degree of disability and by the type of lesion (juxta-articular or shaft).
In humans, these conditions may be classified into three groups:
1. Spinal: Scheuermann's disease (of the interspinal joints) which is a curve in the thoracic spine.
2. Articular: Legg-Calvé-Perthes disease (or, avascular necrosis of the femoral head in the hip), Köhler's disease (of the tarsal navicular bone of the foot), Panner's disease (of the capitulum of the elbow), and Freiberg's infraction (of the second or third metatarsal of the foot and less frequently the first or fourth; sometimes called Freiberg's Infraction or Freiberg's disease)
3. Non-articular: This group includes Sever's disease (of the calcaneus, or heel), and Kienbock's disease of the hand, and other conditions not completely characteristic of the osteochondrosis, such as Osgood-Schlatter's disease (of the tibial tubercle) and Osteochondritis dissecans.
Operations that attempt to restore a blood supply to the lunate may be performed.
Depending on the stage the disease is in when it is discovered, varying treatments are applied.
If X-rays show a mostly intact lunate (not having lost a great deal of size, and not having been compressed into a triangular shape), but an MRI shows a lack of blood flow to the bone, then revascularization is normally attempted. Revascularization techniques, usually involving a bone graft taken elsewhere from the body — often held in place by an external fixator for a period of weeks or months — have been successful at stages as late as 3B, although their use at later stages (like most treatments for Kienböck's) is controversial.
One conservative treatment option would be using an Ultrasound Bone Stimulator, which uses low-intensity pulsed ultrasound to increase vascular endothelial growth factor (VEG-F) and increase blood flow to the bone.
Some Kienböck's patients present with an abnormally large difference in length between the radius and the ulna, termed "ulnar variance", which is hypothesized to cause undue pressure on the lunate, contributing to its avascularity. In cases with such a difference, "radial shortening" is commonly performed. In this procedure, the radius (the lateral long bone) is shortened by a given length, usually between 2 and 5 mm, to relieve the pressure on the dying lunate. A titanium plate is inserted to hold the newly shortened bone together.
During Stage 3, the lunate has begun to break apart due to the pressure of the surrounding bones. This causes sharp fragments of bone to float between the joints, causing excruciating pain. At this point, the lunate is ready for removal. The most frequently performed surgery is the "Proximal Row Carpectomy", where the lunate, scaphoid and triquetrum are extracted. This greatly limits the range of motion of the wrist, but pain relief can be achieved for longer than after the other surgeries.
Another surgical option for this stage is a titanium, silicon or pyrocarbon implant that takes place of the lunate, though doctors shy from this due to a tendency of the implant to smooth the edges of the surrounding bones, thus causing painful pinched nerves when the bones slip out of place.
After the lunate is removed, another procedure, "ulnar shortening" can be performed. This relieves pressure on the newly formed wrist joint of the pisiform, hamate and capitate. Depending on the surgeon, the procedure may be performed the same way as the "radial shortening" where a small section is removed, or the entire top of the ulna may be excised.
At Stage 4, the lunate has completely disintegrated and the other bones in the wrist have radiated downward to fill in the void. The hand now has a deformed, crippled appearance. The only procedure that can be done is the "total wrist fusion", where a plate is inserted on the top of the wrist from the radius to the carpals, effectively freezing all flexion and movement in the wrist. Rotation is still possible as it is controlled by the radius and ulna.
This is currently the last and most complete surgical option for Kienböck's sufferers.
Most of the treatments described here are not mutually exclusive — meaning that a single patient may receive many of them in his quest to relieve pain. For instance, some patients have had casting, bone graft, radial shortening, proximal row carpectomy, and wrist fusion, all on the same hand.
OFC may be diagnosed using a variety of techniques. Muscles in patients afflicted with OFC can either appear unaffected or "bulked up." If muscular symptoms appear upon the onset of hyperparathyroidism, they are generally sluggish contraction and relaxation of the muscles. Deviation of the trachea (a condition in which the trachea shifts from its position at the midline of the neck), in conjunction with other known symptoms of OFC can point to a diagnosis of parathyroid carcinoma.
Blood tests on patients with OFC generally show high levels of calcium (normal levels are considered to range between 8.5 and 10.2 mg/dL, parathyroid hormone (levels generally above 250 pg/mL, as opposed to the "normal" upper-range value of 65 pg/mL), and alkaline phosphatase(normal range is 20 to 140 IU/L).
X-rays may also be used to diagnose the disease. Usually, these X-rays will show extremely thin bones, which are often bowed or fractured. However, such symptoms are also associated with other bone diseases, such as osteopenia or osteoporosis. Generally, the first bones to show symptoms via X-ray are the fingers. Furthermore, brown tumors, especially when manifested on facial bones, can be misdiagnosed as cancerous. Radiographs distinctly show bone resorption and X-rays of the skull may depict an image often described as "ground glass" or "salt and pepper". Dental X-rays may also be abnormal.
Cysts may be lined by osteoclasts and sometimes blood pigments, which lend to the notion of "brown tumors." Such cysts can be identified with nuclear imaging combined with specific tracers, such as sestamibi. Identification of muscular degeneration or lack of reflex can occur through clinical testing of deep tendon reflexes, or via photomotogram (an achilles tendon reflex test).
Fine needle aspiration (FNA) can be used to biopsy bone lesions, once found on an X-ray or other scan. Such tests can be vital in diagnosis and can also prevent unnecessary treatment and invasive surgery. Conversely, FNA biopsy of tumors of the parathyroid gland is not recommended for diagnosing parathyroid carcinoma and may in fact be harmful, as the needle can puncture the tumor, leading to dissemination and the possible spread of cancerous cells.
The brown tumors commonly associated with OFC display many of the same characteristics of osteoclasts. These cells are characteristically benign, feature a dense, granular cytoplasm, and a nucleus that tends to be ovular in shape, enclosing comparatively fine chromatin. Nucleoli also tend to be smaller than average.
Treatment is difficult, often requiring a joint replacement. Spontaneous improvement occasionally happens and some juxta-articular lesions do not progress to collapse. Other treatments include immobilization and osteotomy of the femur. Cancellous bone grafts are of little help.
First described by David Lichtman et al. in 1977.
The purpose of this classification system is to guide treatment and to enable comparison of clinical outcomes.
1. Stage I Normal radiograph (possible lunate fracture).
2. Stage II Sclerosis of the lunate without collapse. (Portions of the lunate begin to deteriorate. This shows as a white blemish on x-rays.)
3. Stage IIIA Lunate collapse and fragmentation, in addition to proximal migration of the capitate.
4. Stage IIIB Lunate collapse and fragmentation, in addition to proximal migration of the capitate. In addition there is fixed flexion deformity of the scaphoid.
5. Stage IV Changes up to and including fragmentation, with radiocarpal and midcarpal arthritic changes.
Chondromyxoid fibromas can share characteristics with chondroblastomas with regards to histologic and radiographic findings. However they more commonly originate from the metaphysis, lack calcification and have a different histologic organization pattern. Other differential diagnoses for chondroblastoma consist of giant cell tumors, bone cysts, eosinophilic granulomas, clear cell chondrosarcomas, and enchondromas (this list is not exhaustive).
A non-vital tooth is necessary for the diagnosis of a periapical cyst, meaning the nerve has been removed by root canal therapy. Oral examination of the surrounding intraoral anatomical structures should be palpated to identify the presence of bone expansion or displacement of tooth roots as well as crepitus noises during examination, indicating extensive bone damage. Bulging of the buccal or lingual cortical plates may be present. Age of occurrence in the patient, the location of the cyst, the edges of cystic contours, and the impact that the cyst has on adjacent structures must all be considered for proper diagnosis.
Several lesions can appear similarly in radiographic appearance. Intraoral X-rays or a 3-D cone beam scan of the affected area can be used to obtain radiological images and confirm diagnosis of cysts in the periapical area. Circular or ovoid radiolucency surrounding the root tip of approximately 1-1.5 cm in diameter is indicative of the presence of a periapical cyst. The border of the cyst is seen as a narrow opaque margin contiguous with the lamina dura. In cysts that are actively enlarging, peripheral areas of the margin may not be present. Periapical cysts have a characteristic unilocular shape on radiographs. There is also a severe border of cortication between the cyst and surrounding bone. Pseudocysts, on the other hand, have a fluid filled cavity but are not lined by epithelium, therefore they have a less severe and more blurred border between the fluid and bony surroundings.
Resorption of the roots of affected teeth may also be observed as the absence of portions of normal root structures.
Infected cysts will produce a positive percussion test on the affected tooth as well as a negative response to the pulp test. There may also be visible swelling in the overlying soft tissues. The affected tooth may also exhibit discoloration.
The main diagnostic tools for evaluating FND are X-rays and CT-scans of the skull. These tools could display any possible intracranial pathology in FND. For example, CT can be used to reveal widening of nasal bones. Diagnostics are mainly used before reconstructive surgery, for proper planning and preparation.
Prenatally, various features of FND (such as hypertelorism) can be recognized using ultrasound techniques. However, only three cases of FND have been diagnosed based on a prenatal ultrasound.
Other conditions may also show symptoms of FND. For example, there are other syndromes that also represent with hypertelorism. Furthermore, disorders like an intracranial cyst can affect the frontonasal region, which can lead to symptoms similar to FND. Therefore, other options should always be considered in the differential diagnosis.
Chondroid differentiation is a common feature of chondroblastoma. A typical histological appearance consists of a combination of oval mononuclear and multi-nucleated osteoclast-type giant cells. However this is not a prerequisite for diagnosis, as cells with epithelioid characteristics have been observed in lesions of the skull and facial bones. A "chicken-wire" appearance is characteristic of chondroblastoma cells and is the result of dystrophic calcification that may surround individual cells. Although, calcification may not be present and is not a prerequisite for diagnosis. Mitotic figures can be observed in chondroblastoma tissue but are not considered atypical in nature, and therefore, should not be viewed as a sign of a more serious pathology. There is no correlation between mitotic activity and location of the lesion. Furthermore, the presence of atypical cells is rare and is not associated with malignant chondroblastoma. There are no discernible histological differences observed when comparing the aggressive form of chondroblastoma that can cause recurrence or metastases with its less aggressive, benign, counterpart.
Giant osteoclasts can occur in some diseases, including Paget's disease of bone and bisphosphonate toxicity.
X-rays usually do not show evidence of new stress fractures, but can be used 3 weeks after onset of pain when the bone begins to remodel. A CT scan, MRI, or 3-phase bone scan may be more effective for early diagnosis.
MRI appears to be the most accurate test.
Most cysts are discovered as a chance finding on routine dental radiography. On an x-ray, cysts appear as radiolucent (dark) areas with radiopaque (white) borders. Cysts are usually unilocular, but may also be multilocular. Sometimes aspiration is used to aid diagnosis of a cystic lesion, e.g. fluid aspirate from a radicular cyst may appear straw colored and display shimmering due to cholesterol content. Almost always, the cyst lining is sent to a pathologist for histopathologic examination after it has been surgically removed. This means that the exact diagnosis of the type of cyst is often made in retrospect.
A sequestrum (plural: sequestra) is a piece of dead bone that has become separated during the process of necrosis from normal or sound bone.
It is a complication (sequela) of osteomyelitis. The pathological process is as follows:
- infection in the bone leads to an increase in intramedullary pressure due to inflammatory exudates
- the periosteum becomes stripped from the osteum, leading to vascular thrombosis
- bone necrosis follows due to lack of blood supply
- sequestra are formed
The sequestra are surrounded by sclerotic bone which is relatively avascular (without a blood supply). Within the bone itself, the haversian canals become blocked with scar tissue, and the bone becomes surrounded by thickened periosteum.
Due to the avascular nature of this bone, antibiotics which travel to sites of infection via the bloodstream poorly penetrate these tissues, hence the difficulty in treating chronic osteomyelitis.
At the same time as this, new bone is forming (known as involucrum). Openings in this involucrum allow debris and exudates (including pus) to pass from the sequestrum via sinus tracts to the skin.
Rarely, a sequestrum may turn out to be an osteoid osteoma, a rare tumor of the bone.
Bisphosphonate therapy has been suggested as a first-line therapeutic option in many case reports and series.
Treatment with tumor necrosis factor alpha antagonists (TNF inhibitors) have been tried in few patients with limited success. Other drugs that are used in psoriatic arthritis, to which SAPHO syndrome is closely related, have also been used in this condition. They include NSAIDs, corticosteroids, sulfasalazine, methotrexate, ciclosporin and leflunomide.
Some patients have responded to antibiotics. The rationale for their use is that Propionibacterium acnes, a bacterium known for its role in acne, has been isolated from bone biopsies of SAPHO patients.
An osteoclast (from the Greek words for "bone" (ὀστέον), and "broken" (κλαστός)) is a type of bone cell that breaks down bone tissue. This function is critical in the maintenance, repair, and remodelling of bones of the vertebral skeleton. The osteoclast disassembles and digests the composite of hydrated protein and mineral at a molecular level by secreting acid and a collagenase, a process known as "bone resorption". This process also helps regulate the level of blood calcium.
An odontoclast (/odon·to·clast/; o-don´to-klast) is an osteoclast associated with absorption of the roots of deciduous teeth.