Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Investigations by the physician include imaging (ultrasound, CAT scan, MRI) and, if possible, obtaining a tissue diagnosis by biopsy, hysteroscopy, or D&C.
Ultimately the diagnosis is established by the histologic examination of the specimen. Typically malignant lesions have >10 mitosis per high power field. In contrast a uterine leiomyoma as a benign lesion would have < 5 mitosis per high power field.
Uterine adenosarcomas are typically treated with a total abdominal hysterectomy and bilateral salpingoophorectomy (TAH-BSO). Ovary sparing surgery may be done in women wishing to preserve fertility.
The prognosis is determined primarily by the cancer stage. Most tumours are discovered at an early stage and have a good prognosis, especially when compared to uterine carcinosarcoma. Five year survival for stage I and stage III tumours is approximately 80% and 50% respectively.
Unusual or postmenopausal bleeding may be a sign of a malignancy including uterine sarcoma and needs to be investigated. Other signs include pelvic pain, pressure, and unusual discharge. A nonpregnant uterus that enlarges quickly is suspicious. However, none of the signs are specific. Specific screening test have not been developed; a Pap smear is a screening test for cervical cancer and not designed to detect uterine sarcoma.
The diagnosis is strongly suggested by ultrasound (sonogram), but definitive diagnosis requires histopathological examination. On ultrasound, the mole resembles a bunch of grapes ("cluster of grapes" or "honeycombed uterus" or "snow-storm"). There is increased trophoblast proliferation and enlarging of the chorionic villi. Angiogenesis in the trophoblasts is impaired as well.
Sometimes symptoms of hyperthyroidism are seen, due to the extremely high levels of hCG, which can mimic the normal Thyroid-stimulating hormone (TSH).
Endometrial polyps are usually benign although some may be precancerous or cancerous. About 0.5% of endometrial polyps contain adenocarcinoma cells. Polyps can increase the risk of miscarriage in women undergoing IVF treatment. If they develop near the fallopian tubes, they may lead to difficulty in becoming pregnant. Although treatments such as hysteroscopy usually cure the polyp concerned, recurrence of endometrial polyps is frequent. Untreated, small polyps may regress on their own.
Endometrial polyps can be detected by vaginal ultrasound (sonohysterography), hysteroscopy and dilation and curettage. Detection by ultrasonography can be difficult, particularly when there is endometrial hyperplasia (excessive thickening of the endometrium). Larger polyps may be missed by curettage.
Endometrial polyps can be solitary or occur with others. They are round or oval and measure between a few millimeters and several centimeters in diameter. They are usually the same red/brown color of the surrounding endometrium although large ones can appear to be a darker red. The polyps consist of dense, fibrous tissue (stroma), blood vessels and glandlike spaces lined with endometrial epithelium. If they are pedunculated, they are attached by a thin stalk (pedicle). If they are sessile, they are connected by a flat base to the uterine wall. Pedunculated polyps are more common than sessile ones.
A pelvic examination may reveal a double vagina or double cervix that should be further investigated and may lead to the discovery of a uterine septum. In most patients, however, the pelvic examination is normal. Investigations are usually prompted on the basis of reproductive problems.
Helpful techniques to investigate a septum are transvaginal ultrasonography and sonohysterography, MRI, and hysteroscopy. More recently 3-D ultrasonography has been advocated as an excellent non-invasive method to delineate the condition. Prior to modern imaging hysterosalpingography was used to help diagnose the uterine septum, however, a bicornuate uterus may deliver a similar image.
An important category of septate uterus is the hybrid type a variant that may be misdiagnosed as bicornuate uterus when seen by laparoscopy Professor El Saman From Egypt was the first to describe this anomaly and warned gynecologist about this common misdiagnosis, whenever there is a uterine fundus depression on laparoscopy gynecologists should compare the depth of this depression with the depth of the dividing internal interface. Hybrid septate uterus benefit from hysteroscopic metroplasty under laparoscopic control.
Hydatidiform moles should be treated by evacuating the uterus by uterine suction or by surgical curettage as soon as possible after diagnosis, in order to avoid the risks of choriocarcinoma. Patients are followed up until their serum human chorionic gonadotrophin (hCG) level has fallen to an undetectable level. Invasive or metastatic moles (cancer) may require chemotherapy and often respond well to methotrexate. As they contain paternal antigens, the response to treatment is nearly 100%. Patients are advised not to conceive for half a year after hCG levels have normalized. The chances of having another molar pregnancy are approximately 1%.
Management is more complicated when the mole occurs together with one or more normal fetuses.
A unicornuate uterus may be associated with a rudimentary horn on the opposite site. This horn may be communicating with the uterus, and linked to the ispilateral tube. Occasionally a pregnancy may implant into such a horn setting up a dangerous situation as such pregnancy can lead to a potentially fatal uterine rupture. Surgical resection of the horn is indicated.
A pelvic examination will typically reveal a single vagina and a single cervix. Investigations are usually prompted on the basis of reproductive problems.
Helpful techniques to investigate the uterine structure are transvaginal ultrasonography and sonohysterography, hysterosalpingography, MRI, and hysteroscopy. More recently 3-D ultrasonography has been advocated as an excellent non-invasive method to evaluate uterine malformations.
Other forms of uterine malformation need to be considered in the work-up for uterine septum. An arcuate uterus contains a residual cranial septum that is smaller than an incomplete septum but definitions between the two conditions are not standardized, - a cause for discrepancies in the literature.
A bicornuate uterus is sometimes confused with a septate uterus as in each situation the cavity is partitioned, however, in the former case the uterine body is cranially doubled (two uterine horns) while in the latter a single uterine body is present. The former represents a malformation of incomplete fusion of the Müllerian systems, and the latter of incomplete absorption. A hysterosalpingogram may not be able to distinguish between the two conditions. The differentiation, however, is important as a septum can be corrected by hysteroscopy, while a bicornuate uterus would be corrected by a metroplasty via laparotomy if necessary.
A transvaginal ultrasound can reveal the condition.
Helpful techniques to investigate the uterine structure are transvaginal ultrasonography and sonohysterography, hysterosalpingography, MRI, and hysteroscopy. More recently 3-D ultrasonography has been advocated as an excellent non-invasive method to delineate the condition.
Adenomyosis can vary widely in the extent and location of its invasion within the uterus. As a result, there are no established pathognomonic features to allow for a definitive diagnosis of adenomyosis through non-invasive imaging. Nevertheless, non-invasive imaging techniques such as transvaginal ultrasonography (TVUS) and magnetic resonance imaging (MRI) can both be used to strongly suggest the diagnosis of adenomyosis, guide treatment options, and monitor response to treatment. Indeed, TVUS and MRI are the only two practical means available to establish a pre-surgical diagnosis.
The major differential diagnosis is the uterine septum. The lack of agreement to separate these two entities makes it difficult to assess the results in the literature.
Patients with a double uterus may need special attention during pregnancy as premature birth and malpresentation are common. Cesarean section was performed in 82% of patients reported by Heinonen.
Uterus didelphys, in certain studies, has also been found associated with higher rate of infertility, miscarriage, intrauterine growth retardation, and postpartum bleed.
Magnetic resonance imaging (MRI) provides slightly better diagnostic capability compared to TVUS, due to the increased ability of MRI to differentiate objectively between different types of soft tissue. This is possible with MRI's higher spatial and contrast resolution. Overall, it is estimated that MRI has a sensitivity of 74% and specificity of 91% for the detection of adenomyosis. Diagnosis through MRI focuses predominately upon investigating the junctional zone. The uterus will have a thickened junctional zone with darker/diminished signal on both T1 and T2 weighted sequences.
Three objective measures of the junctional zone can be used to diagnose adenomyosis.
1. A thickness of the junctional zone greater than 8–12 mm. Less than 8 mm is normal.
2. A junctional zone width being greater than 40% of the width of the myometrium.
3. Variability in the width of the junctional zone being greater than 5 mm.
Interspersed within the thickened, darker signal of the junctional zone, one will often see foci of hyperintensity (bright spots) on the T2 weighted scans representing small cystically dilatated glands or more acute sites of microhemorrhage.
MRI is limited by other factors, but not by calcified uterine fibroids (as is ultrasound). In particular, MRI is better able to differentiate adenomyosis from multiple small uterine fibroids.
The presence of a uterine fibroid versus an adnexal tumor is made. Fibroids can be mistaken for ovarian neoplasms. An uncommon tumor which may be mistaken for a fibroid is Sarcoma botryoides. It is more common in children and adolescents. Like a fibroid, it can also protrude from the vagina and is distinguished from fibroids. While palpation used in a pelvic examination can typically identify the presence of larger fibroids, gynecologic ultrasonography (ultrasound) has evolved as the standard tool to evaluate the uterus for fibroids. Sonography will depict the fibroids as focal masses with a heterogeneous texture, which usually cause shadowing of the ultrasound beam. The location can be determined and dimensions of the lesion measured. Also, magnetic resonance imaging (MRI) can be used to define the depiction of the size and location of the fibroids within the uterus.
Imaging modalities cannot clearly distinguish between the benign uterine leiomyoma and the malignant uterine leiomyosarcoma, however, the latter is quite rare. Fast growth or unexpected growth, such as enlargement of a lesion after menopause, raise the level of suspicion that the lesion might be a sarcoma. Also, with advanced malignant lesions, there may be evidence of local invasion. A biopsy is rarely performed and if performed, is rarely diagnostic. Should there be an uncertain diagnosis after ultrasounds and MRI imaging, surgery is generally indicated.
Other imaging techniques that may be helpful specifically in the evaluation of lesions that affect the uterine cavity are hysterosalpingography or sonohysterography.
Usually bicornuate uterus has good reproductive outcomes. Therefore, the pure type rarely require treatment. In case of hybrid types hysteroscopic metroplasty is needed.
Besides a physical examination, the physician will need imaging techniques to determine the character of the malformation: gynecologic ultrasonography, pelvic MRI, or hysterosalpingography. A hysterosalpingogram is not considered as useful due to the inability of the technique to evaluate the exterior contour of the uterus and distinguish between a bicornuate and septate uterus.
In addition, laparoscopy and/or hysteroscopy may be indicated.
In some patients the vaginal development may be affected.
The diagnosis of thoracic endometriosis is primarily based on clinical history and examination, augmented with non-invasive studies such as X-ray, CT scan, and magnetic resonance imaging of the chest. Pelvic ultrasound is also useful to determine if the patient has any degree of pelvic or abdominal endometriosis (indicated by the presence of free fluid).
More invasive methods for obtaining a tissue diagnosis of thoracic endometriosis include video thoracoscopy (for pleural or pulmonary biopsy), or bronchoscopy (for pulmonary or bronchial biopsy, or bronchial lavage). A case series has been reported in which clinical diagnosis was made in 50% of patients, the rest being diagnosed either via biopsy (25%) or bronchoalveolar lavage (25%). (25%)
About 1 out of 1000 lesions are or become malignant, typically as a leiomyosarcoma on histology. A sign that a lesion may be malignant is growth after menopause. There is no consensus among pathologists regarding the transformation of leiomyoma into a sarcoma.
A pelvic examination will typically reveal a double vagina and a double cervix. Investigations are usually prompted on the basis of such findings as well as when reproductive problems are encountered. Not all cases of uterus didelphys involve duplication of the cervix and vagina.
Helpful techniques to investigate the uterine structure are transvaginal ultrasonography and sonohysterography, hysterosalpingography, MRI, and hysteroscopy. More recently 3-D ultrasonography has been advocated as an excellent non-invasive method to evaluate uterine malformations.
Uterus didelphys is often confused with a complete uterine septum. Often more than one method of investigation is necessary to accurately diagnose the condition. Correct diagnosis is crucial as treatment for these two conditions is very different. Whereas most doctors recommend removal of a uterine septum, they generally concur that it is better not to operate on a uterus didelphys. In either case, a highly qualified reproductive endocrinologist should be consulted.
Outcome of MMMTs is determined primarily by depth of invasion and stage. As with endometrial carcinomas, the prognosis is influenced by the grade and type of the adenocarcinoma, being poorest with serous differentiation. MMMTs are highly malignant; a stage I tumor has an expected five-year survival rate of 50%, while the overall five-year survival rate is less than 20%.
Staging of Uterine MMMTs is as follows:
- Stage I. Carcinoma is confined to the corpus uteri itself.
- Stage II. Carcinoma involves the corpus and the cervix.
- Stage III. Carcinoma extends outside the uterus but not outside the lesser pelvis.
- Stage IV. Carcinoma extends outside the true pelvis or involves the mucosa of the bladder or the rectum.
In gross appearance, MMMTs are fleshier than adenocarcinomas, may be bulky and polypoid, and sometimes protrude through the cervical os. On histology, the tumors consist of adenocarcinoma (endometrioid, serous or clear cell) mixed with the malignant mesenchymal (sarcoma) elements; alternatively, the tumor may contain two distinct and separate epithelial and mesenchymal components. Sarcomatous components may also mimic extrauterine tissues (e.g., striated muscle, cartilage, adipose tissue, and bone). Metastases usually contain only epithelial components.