Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The chest x-ray is distinctive with features that appear similar to an extensive pneumonia, with both lungs showing widespread white patches. The white patches may seem to migrate from one area of the lung to another as the disease persists or progresses. Computed tomography (CT) may be used to confirm the diagnosis. Often the findings are typical enough to allow the doctor to make a diagnosis without ordering additional tests. To confirm the diagnosis, a doctor may perform a lung biopsy using a bronchoscope. Many times, a larger specimen is needed and must be removed surgically.
Plain chest radiography shows normal lung volumes, with characteristic patchy unilateral or bilateral consolidation. Small nodular opacities occur in up to 50% of patients and large nodules in 15%. On high resolution computed tomography, airspace consolidation with air bronchograms is present in more than 90% of patients, often with a lower zone predominance A subpleural or peribronchiolar distribution is noted in up to 50% of patients. Ground glass appearance or hazy opacities associated with the consolidation are detected in most patients.
Pulmonary physiology is restrictive with a reduced diffusion capacity of the lung for carbon monoxide (DCO). Airflow limitation is uncommon; gas exchange is usually abnormal and mild hypoxemia is common. Bronchoscopy with bronchoalveolar lavage reveals up to 40% lymphocytes, along with more subtle increases in neutrophils and eosinophils. In patients with typical clinical and radiographic features, a transbronchial biopsy that shows the pathologic pattern of organizing pneumonia and lacks features of an alternative diagnosis is adequate to make a tentative diagnosis and start therapy. On surgical lung biopsy, the histopathologic pattern is organizing pneumonia with preserved lung architecture; this pattern is not exclusive to BOOP and must be interpreted in the clinical context.
Histologically, cryptogenic organizing pneumonia is characterized by the presence of polypoid plugs of loose organizing connective tissue (Masson bodies) within alveolar ducts, alveoli, and bronchioles.
Treatment depends on the underlying cause. Treatments include iced saline, and topical vasoconstrictors such as adrenalin or vasopressin. Selective bronchial intubation can be used to collapse the lung that is bleeding. Also, endobronchial tamponade can be used. Laser photocoagulation can be used to stop bleeding during bronchoscopy. Angiography of bronchial arteries can be performed to locate the bleeding, and it can often be embolized. Surgical option is usually the last resort, and can involve, removal of a lung lobe or removal of the entire lung. Non–small-cell lung cancer can also be treated with erlotinib or gefitinib. Cough suppressants can increase the risk of choking.
Rare cases of BOOP have induced with lobar cicatricial atelectasis.
There is no one single test for confirming that breathlessness is caused by pulmonary edema; indeed, in many cases, the cause of shortness of breath is probably multifactorial.
Low oxygen saturation and disturbed arterial blood gas readings support the proposed diagnosis by suggesting a pulmonary shunt. Chest X-ray will show fluid in the alveolar walls, Kerley B lines, increased vascular shadowing in a classical batwing peri-hilum pattern, upper lobe diversion (increased blood flow to the superior parts of the lung), and possibly pleural effusions. In contrast, patchy alveolar infiltrates are more typically associated with noncardiogenic edema
Lung ultrasound, employed by a healthcare provider at the point of care, is also a useful tool to diagnose pulmonary edema; not only is it accurate, but it may quantify the degree of lung water, track changes over time, and differentiate between cardiogenic and non-cardiogenic edema.
Especially in the case of cardiogenic pulmonary edema, urgent echocardiography may strengthen the diagnosis by demonstrating impaired left ventricular function, high central venous pressures and high pulmonary artery pressures.
Blood tests are performed for electrolytes (sodium, potassium) and markers of renal function (creatinine, urea). Liver enzymes, inflammatory markers (usually C-reactive protein) and a complete blood count as well as coagulation studies (PT, aPTT) are also typically requested. B-type natriuretic peptide (BNP) is available in many hospitals, sometimes even as a point-of-care test. Low levels of BNP (<100 pg/ml) suggest a cardiac cause is unlikely.
Conditions which commonly involve hemoptysis include bronchitis and pneumonia, lung cancers and tuberculosis. Other possible underlying causes include aspergilloma, bronchiectasis, coccidioidomycosis, pulmonary embolism, pneumonic plague, and cystic fibrosis. Rarer causes include hereditary hemorrhagic telangiectasia (HHT or Rendu-Osler-Weber syndrome), Goodpasture's syndrome, and granulomatosis with polyangiitis. In children, hemoptysis is commonly caused by the presence of a foreign body in the airway. The condition can also result from over-anticoagulation from treatment by drugs such as warfarin.
Blood-laced mucus from the sinus or nose area can sometimes be misidentified as symptomatic of hemoptysis (such secretions can be a sign of nasal or sinus cancer, but also a sinus infection). Extensive non-respiratory injury can also cause one to cough up blood. Cardiac causes like congestive heart failure and mitral stenosis should be ruled out.
The origin of blood can be identified by observing its color. Bright-red, foamy blood comes from the respiratory tract, whereas dark-red, coffee-colored blood comes from the gastrointestinal tract. Sometimes hemoptysis may be rust-colored.
The most common cause of minor hemoptysis is bronchitis.
- Lung cancer, including both non-small cell lung carcinoma and small cell lung carcinoma.
- Sarcoidosis
- Aspergilloma
- Tuberculosis
- Histoplasmosis
- Pneumonia
- Pulmonary edema
- Pulmonary embolism
- Foreign body aspiration and aspiration pneumonia
- Goodpasture's syndrome
- Granulomatosis with polyangiitis
- Eosinophilic granulomatosis with polyangiitis (Churg-Strauss syndrome)
- Bronchitis
- Bronchiectasis
- Pulmonary embolism
- Anticoagulant use
- Trauma
- Lung abscess
- Mitral stenosis
- Tropical eosinophilia
- Bleeding disorders
- Hughes-Stovin Syndrome and other variants of Behçet's disease
- Squamous Cell Carcinoma Of Esophagus
Physical examination may sometimes reveal low blood pressure, high heart rate, or low oxygen saturation. The respiratory rate may be faster than normal, and this may occur a day or two before other signs. Examination of the chest may be normal, but it may show decreased chest expansion on the affected side. Harsh breath sounds from the larger airways that are transmitted through the inflamed lung are termed bronchial breathing and are heard on auscultation with a stethoscope. Crackles (rales) may be heard over the affected area during inspiration. Percussion may be dulled over the affected lung, and increased, rather than decreased, vocal resonance distinguishes pneumonia from a pleural effusion.
Pneumonia is typically diagnosed based on a combination of physical signs and a chest X-ray. However, the underlying cause can be difficult to confirm, as there is no definitive test able to distinguish between bacterial and non-bacterial origin.
The World Health Organization has defined pneumonia in children clinically based on either a cough or difficulty breathing and a rapid respiratory rate, chest indrawing, or a decreased level of consciousness. A rapid respiratory rate is defined as greater than 60 breaths per minute in children under 2 months old, greater than 50 breaths per minute in children 2 months to 1 year old, or greater than 40 breaths per minute in children 1 to 5 years old. In children, low oxygen levels and lower chest indrawing are more sensitive than hearing chest crackles with a stethoscope or increased respiratory rate. Grunting and nasal flaring may be other useful signs in children less than five years old.
In general, in adults, investigations are not needed in mild cases. There is a very low risk of pneumonia if all vital signs and auscultation are normal. In persons requiring hospitalization, pulse oximetry, chest radiography and blood tests—including a complete blood count, serum electrolytes, C-reactive protein level, and possibly liver function tests—are recommended. Procalcitonin may help determine the cause and support who should receive antibiotics.
The diagnosis of influenza-like illness can be made based on the signs and symptoms; however, confirmation of an influenza infection requires testing. Thus, treatment is frequently based on the presence of influenza in the community or a rapid influenza test.
The most common organisms which cause lobar pneumonia are "Streptococcus pneumoniae", also called pneumococcus, "Haemophilus influenzae" and "Moraxella catarrhalis". "Mycobacterium tuberculosis", the tubercle bacillus, may also cause lobar pneumonia if pulmonary tuberculosis is not treated promptly.
Like other types of pneumonia, lobar pneumonia can present as community acquired, in immune suppressed patients or as nosocomial infection. However, most causative organisms are of the community acquired type.
Pathological specimens to be obtained for investigations include:
1. Sputum for culture, AAFBS and gram stain
2. Blood for full hemogram/complete blood count, ESR and other acute phase reactants
3. Procalcitonin test, more specific
The identification of the infectious organism (or other cause) is an important part of modern treatment of pneumonia. The anatomical patterns of distribution can be associated with certain organisms, and can help in selection of an antibiotic while waiting for the pathogen to be cultured.
The specific criteria for diagnosis of CPA are:
Chest X-rays showing one or more lung cavities. There may be a fungal ball present or not.
Symptoms lasting more than 3 months, usually including weight loss, fatigue, cough, coughing blood (haemoptysis) and breathlessness
A blood test or tissue fluid test positive for Aspergillus species
Aspergilloma
An aspergilloma is a fungal mass caused by a fungal infection with Aspergillus species that grows in either scarred lungs or in a pre-existing lung cavity, which may have been caused by a previous infection. Patients with a previous history of tuberculosis, sarcoidosis, cystic fibrosis or other lung disease are most susceptible to an aspergilloma. Aspergillomas may have no specific symptoms but in many patients there is some coughing up of blood called haemoptysis - this may be infrequent and in small quantity, but can be severe and then it requires urgent medical help.
Tests used to diagnose an aspergilloma may include:
- Chest X-ray
- Chest CT
- Sputum culture
- Bronchoscopy or bronchoscopy with lavage (BAL)
- Serum precipitins for aspergillus (blood test to detect antibodies to aspergillus)
Almost all aspergillomas are caused by "Aspergillus fumigatus". In diabetic patients it may be caused by "Aspergillus niger". It is very rarely caused by "Aspergillus flavus", "Aspergillus oryzae", "Aspergillus terreus" or "Aspergillus nidulans".
As with other chest injuries such as pulmonary contusion, hemothorax, and pneumothorax, pulmonary laceration can often be treated with just supplemental oxygen, ventilation, and drainage of fluids from the chest cavity. A thoracostomy tube can be used to remove blood and air from the chest cavity. About 5% of cases require surgery, called thoracotomy. Thoracotomy is especially likely to be needed if a lung fails to re-expand; if pneumothorax, bleeding, or coughing up blood persist; or in order to remove clotted blood from a hemothorax. Surgical treatment includes suturing, stapling, oversewing, and wedging out of the laceration. Occasionally, surgeons must perform a lobectomy, in which a lobe of the lung is removed, or a pneumonectomy, in which an entire lung is removed.
In those with underlying heart disease, effective control of congestive symptoms prevents pulmonary edema.
Dexamethasone is in widespread use for the prevention of high altitude pulmonary edema. Sildenafil is used as a preventive treatment for altitude-induced pulmonary edema and pulmonary hypertension, the mechanism of action is via phosphodiesterase inhibition which raises cGMP, resulting in pulmonary arterial vasodilation and inhibition of smooth muscle cell proliferation. While this effect has only recently been discovered, sildenafil is already becoming an accepted treatment for this condition, in particular in situations where the standard treatment of rapid descent has been delayed for some reason.
Management has generally been reported to be conservative, though deaths have been reported.
- Removal from water
- Observation
- Diuretics and / or Oxygen when necessary
- Episodes are generally self-limiting in the absence of other medical problems
Pulmonary laceration may not be visible using chest X-ray because an associated pulmonary contusion or hemorrhage may mask it. As the lung contusion clears (usually within two to four days), lacerations begin to become visible on chest X-ray. CT scanning is more sensitive and better at detecting pulmonary laceration than X-rays are, and often reveals multiple lacerations in cases where chest X-ray showed only a contusion. Before CT scanning was widely available, pulmonary laceration was considered unusual because it was not common to find with X-ray alone. On a CT scan, pulmonary lacerations show up in a contused area of the lung, typically appearing as cavities filled with air or fluid that usually have a round or ovoid shape due to the lung's elasticity.
Hematomas appear on chest radiographs as smooth masses that are round or ovoid in shape. Like lacerations, hematomas may initially be hidden on X-ray by lung contusions, but they become more apparent as the contusion begins to heal. Pneumatoceles have a similar shape to that of hematomas but have thin, smooth walls. Lacerations may be filled completely with blood, completely with air, or partially with both. Lacerations filled with both blood and air display a distinctive air-fluid level. A single laceration may occur by itself, or many may be present, creating an appearance like Swiss cheese in the radiography of the lung.
Pulmonary laceration is usually accompanied by hemoptysis (coughing up blood or of blood-stained sputum).
Thoracoscopy may be used in both diagnosis and treatment of pulmonary laceration.
A healing laceration may resemble a pulmonary nodule on radiographs, but unlike pulmonary nodules, lacerations decrease in size over time on radiographs.
The diagnosis can be confirmed by the characteristic appearance of the chest x-ray, which shows widespread pulmonary infiltrates, and an arterial oxygen level (PaO) that is strikingly lower than would be expected from symptoms. Gallium 67 scans are also useful in the diagnosis. They are abnormal in approximately 90% of cases and are often positive before the chest x-ray becomes abnormal. The diagnosis can be definitively confirmed by histological identification of the causative organism in sputum or bronchio-alveolar lavage (lung rinse). Staining with toluidine blue, silver stain, periodic-acid schiff stain, or an immunofluorescence assay will show the characteristic cysts. The cysts resemble crushed ping-pong balls and are present in aggregates of 2 to 8 (and not to be confused with "Histoplasma" or "Cryptococcus", which typically do not form aggregates of spores or cells). A lung biopsy would show thickened alveolar septa with fluffy eosinophilic exudate in the alveoli. Both the thickened septa and the fluffy exudate contribute to dysfunctional diffusion capacity which is characteristic of this pneumonia.
"Pneumocystis" infection can also be diagnosed by immunofluorescent or histochemical staining of the specimen, and more recently by molecular analysis of polymerase chain reaction products comparing DNA samples. Notably, simple molecular detection of "Pneumocystis jirovecii" in lung fluids does not mean that a person has "Pneumocystis" pneumonia or infection by HIV. The fungus appears to be present in healthy individuals in the general population.
A chest X-ray and complete blood count may be useful to exclude other conditions at the time of diagnosis. Characteristic signs on X-ray are overexpanded lungs, a flattened diaphragm, increased retrosternal airspace, and bullae, while it can help exclude other lung diseases, such as pneumonia, pulmonary edema, or a pneumothorax. A high-resolution computed tomography scan of the chest may show the distribution of emphysema throughout the lungs and can also be useful to exclude other lung diseases. Unless surgery is planned, however, this rarely affects management. An analysis of arterial blood is used to determine the need for oxygen; this is recommended in those with an FEV less than 35% predicted, those with a peripheral oxygen saturation less than 92%, and those with symptoms of congestive heart failure. In areas of the world where alpha-1 antitrypsin deficiency is common, people with COPD (particularly those below the age of 45 and with emphysema affecting the lower parts of the lungs) should be considered for testing.
COPD may need to be differentiated from other causes of shortness of breath such as congestive heart failure, pulmonary embolism, pneumonia, or pneumothorax. Many people with COPD mistakenly think they have asthma. The distinction between asthma and COPD is made on the basis of the symptoms, smoking history, and whether airflow limitation is reversible with bronchodilators at spirometry. Tuberculosis may also present with a chronic cough and should be considered in locations where it is common. Less common conditions that may present similarly include bronchopulmonary dysplasia and obliterative bronchiolitis. Chronic bronchitis may occur with normal airflow and in this situation it is not classified as COPD.
The diagnostic criteria for acute exacerbation of COPD generally include a production of sputum that is purulent and may be thicker than usual, but without evidence of pneumonia (which involves mainly the alveoli rather than the bronchi). Also, diagnostic criteria may include an increase in frequency and severity of coughing, as well as increased shortness of breath.
A chest X-ray is usually performed on people with fever and, especially, hemoptysis (blood in the sputum), to rule out pneumonia and get information on the severity of the exacerbation. Hemoptysis may also indicate other, potentially fatal, medical conditions.
A history of exposure to potential causes and evaluation of symptoms may help in revealing the cause the exacerbation, which helps in choosing the best treatment. A sputum culture can specify which strain is causing a bacterial AECB. An early morning sample is preferred.
E-nose showed the ability to smell the cause of the exacerbation.
The definition of a COPD exacerbation is commonly described as "lost in translation," meaning that there is no universally accepted standard with regard to defining an acute exacerbation of COPD. Many organizations consider it a priority to create such a standard, as it would be a major step forward in the diagnosis and quality of treatment of COPD.
SIPE is estimated to occur in 1-2% of competitive open-water swimmers, with 1.4% of triathletes, 1.8% of combat swimmers and 1.1% of divers and swimmers reported in the literature.
Bronchiectasis may be diagnosed clinically or on review of imaging. The British Thoracic Society recommends all non-cystic-fibrosis-related bronchiectasis be confirmed by CT. CT may reveal tree-in-bud abnormalities, dilated bronchi, and cysts with defined borders.
Other investigations typically performed at diagnosis include blood tests, sputum cultures, and sometimes tests for specific genetic disorders.
Acute exacerbations can be partially prevented. Some infections can be prevented by vaccination against pathogens such as influenza and "Streptococcus pneumoniae". Regular medication use can prevent some COPD exacerbations; long acting beta-adrenoceptor agonists (LABAs), long-acting anticholinergics, inhaled corticosteroids and low-dose theophylline have all been shown to reduce the frequency of COPD exacerbations. Other methods of prevention include:
- Smoking cessation and avoiding dust, passive smoking, and other inhaled irritants
- Yearly influenza and 5-year pneumococcal vaccinations
- Regular exercise, appropriate rest, and healthy nutrition
- Avoiding people currently infected with e.g. cold and influenza
- Maintaining good fluid intake and humidifying the home, in order to help reduce the formation of thick sputum and chest congestion.
Multiple abnormal laboratory findings have been noted in indium lung. High levels of serum indium have been found in all cases of indium lung. Other abnormal laboratory values that have been found include elevated alanine aminotransferase, elevated aspartate aminotransferase, elevated C-reactive protein, elevated interstitial lung disease markers, and elevated GM-CSF autoantibodies.
Chest radiographs (X-ray photographs) often show a pulmonary infection before physical signs of atypical pneumonia are observable at all.
This is occult pneumonia. In general, occult pneumonia is rather often present in patients with pneumonia and can also be caused by "Streptococcus pneumoniae", as the decrease of occult pneumonia after vaccination of children with a pneumococcal vaccine suggests.
Infiltration commonly begins in the perihilar region (where the bronchus begins) and spreads in a wedge- or fan-shaped fashion toward the periphery of the lung field. The process most often involves the lower lobe, but may affect any lobe or combination of lobes.
CT scanning and radiography can be used to aid in the diagnosis of indium lung. CT abnormalities include ground-glass opacities, interlobular septal thickening, honeycombing, and bronchiectasis.
In hospitalised patients who develop respiratory symptoms and fever, one should consider the diagnosis. The likelihood increases when upon investigation symptoms are found of respiratory insufficiency, purulent secretions, newly developed infiltrate on the chest X-Ray, and increasing leucocyte count. If pneumonia is suspected material from sputum or tracheal aspirates are sent to the microbiology department for cultures. In case of pleural effusion thoracentesis is performed for examination of pleural fluid. In suspected ventilator-associated pneumonia it has been suggested that bronchoscopy(BAL) is necessary because of the known risks surrounding clinical diagnoses.
Some CAP patients require intensive care, with clinical prediction rules such as the pneumonia severity index and CURB-65 guiding the decision to hospitalize. Factors increasing the need for hospitalization include:
- Age greater than 65
- Underlying chronic illnesses
- Respiratory rate greater than 30 per minute
- Systolic blood pressure less than 90 mmHg
- Heart rate greater than 125 per minute
- Temperature below 35 or over 40 °C
- Confusion
- Evidence of infection outside the lung
Laboratory results indicating hospitalization include:
- Arterial oxygen tension less than 60 mm Hg
- Carbon dioxide over 50 mmHg or pH under 7.35 while breathing room air
- Hematocrit under 30 percent
- Creatinine over 1.2 mg/dl or blood urea nitrogen over 20 mg/dl
- White-blood-cell count under 4 × 10^9/L or over 30 × 10^9/L
- Neutrophil count under 1 x 10^9/L
X-ray findings indicating hospitalization include:
- Involvement of more than one lobe of the lung
- Presence of a cavity
- Pleural effusion