Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The use of heparin following surgery is common if there are no issues with bleeding. Generally, a risk-benefit analysis is required, as all anticoagulants lead to an increased risk of bleeding. In people admitted to hospital, thrombosis is a major cause for complications and occasionally death. In the UK, for instance, the Parliamentary Health Select Committee heard in 2005 that the annual rate of death due to thrombosis was 25,000, with at least 50% of these being hospital-acquired. Hence "thromboprophylaxis" (prevention of thrombosis) is increasingly emphasized. In patients admitted for surgery, graded compression stockings are widely used, and in severe illness, prolonged immobility and in all orthopedic surgery, professional guidelines recommend low molecular weight heparin (LMWH) administration, mechanical calf compression or (if all else is contraindicated and the patient has recently suffered deep vein thrombosis) the insertion of a vena cava filter. In patients with medical rather than surgical illness, LMWH too is known to prevent thrombosis, and in the United Kingdom the Chief Medical Officer has issued guidance to the effect that preventative measures should be used in medical patients, in anticipation of formal guidelines.
D-dimers are a fibrin degradation product, and an elevated level can result from plasmin dissolving a clot—or other conditions. Hospitalized patients often have elevated levels for multiple reasons. When individuals are at a high-probability of having DVT, diagnostic imaging is preferred to a D-dimer test. For those with a low or moderate probability of DVT, a D-dimer level might be obtained, which excludes a diagnosis if results are normal. An elevated level requires further investigation with diagnostic imaging to confirm or exclude the diagnosis.
For a suspected first leg DVT in a low-probability situation, the American College of Chest Physicians recommends testing either D-dimer levels with moderate or high sensitivity or compression ultrasound of the proximal veins. These options are suggested over whole-leg ultrasound, and D-dimer testing is the suggested preference overall. The UK National Institute for Health and Care Excellence (NICE) recommends D-dimer testing prior to proximal vein ultrasound.
For a suspected first leg DVT in a moderate-probability scenario, a high-sensitivity D-dimer is suggested as a recommended option over ultrasound imaging, with both whole-leg and compression ultrasound possible. The NICE guideline uses a two-point Wells score and does not refer to a moderate probability group.
The risk of VTE is increased in pregnancy by about five times because of a more hypercoagulable state, a likely adaptation against fatal postpartum hemorrhage. Additionally, pregnant women with genetic risk factors are subject to a roughly three to 30 times increased risk for VTE. Preventative treatments for pregnancy-related VTE in hypercoagulable women were suggested by the ACCP. Homozygous carriers of factor V Leiden or prothrombin G20210A with a family history of VTE were suggested for antepartum LMWH and either LMWH or a vitamin K antagonist (VKA) for the six weeks following childbirth. Those with another thrombophilia and a family history but no previous VTE were suggested for watchful waiting during pregnancy and LMWH or—for those without protein C or S deficiency—a VKA. Homozygous carriers of factor V Leiden or prothrombin G20210A with no personal or family history of VTE were suggested for watchful waiting during pregnancy and LMWH or a VKA for six weeks after childbirth. Those with another thrombophilia but no family or personal history of VTE were suggested for watchful waiting only. Warfarin, a common VKA, can cause harm to the fetus and is not used for VTE prevention during pregnancy.
Evidence supports the use of heparin in people following surgery who have a high risk of thrombosis to reduce the risk of DVTs; however, the effect on PEs or overall mortality is not known. In hospitalized non-surgical patients, mortality decreased but not statistically significant. It does not appear however to decrease the rate of symptomatic DVTs. Using both heparin and compression stockings appears better than either one alone in reducing the rate of DVT.
In hospitalized people who have had a stroke and not had surgery, mechanical measures (compression stockings) resulted in skin damage and no clinical improvement. Data on the effectiveness of compression stockings among hospitalized non-surgical patients without stroke is scarce.
The American College of Physicians (ACP) gave three strong recommendations with moderate quality evidence on VTE prevention in non-surgical patients: that hospitalized patients be assessed for their risk of thromboembolism and bleeding before prophylaxis (prevention); that heparin or a related drug is used if potential benefits are thought to outweigh potential harms; and that graduated compression stockings not be used. As an ACP policy implication, the guideline stated a lack of support for any performance measures that incentivize physicians to apply universal prophylaxis without regard to the risks. Goldhaber recommends that people should be assessed at their hospital discharge for persistent high-risk of venous thrombosis, and that people who adopt a heart-healthy lifestyle might lower their risk of venous thrombosis.
In those with cancer who are still walking about yet receiving chemotherapy, LMWH decreases the risk of VTE. Due to potential concerns of bleeding its routine use is not recommended. For people who are having surgery for cancer, it is recommended that they receive anticoagulation therapy (preferably LMWH) in order to prevent a VTE. LMWH is recommended for at least 7–10 days following cancer surgery, and for one month following surgery for people who have a high risk of VTEs.
In adults who have had their lower leg casted or placed in a brace for more than a week, LMWH decreased the risk of VTEs. LMWH is recommended for adults not in hospital with an above-knee cast and a below-knee cast, and is safe for this indication.
Following the completion of warfarin in those with prior VTE, long term aspirin is beneficial.
The treatment for thrombosis depends on whether it is in a vein or an artery, the impact on the person, and the risk of complications from treatment.
The diagnosis for thrombophlebitis is primarily based on the appearance of the affected area. Frequent checks of the pulse, blood pressure, and temperature may be required. If the cause is not readily identifiable, tests may be performed to determine the cause, including the following:
- Doppler ultrasound
- Extremity arteriography
- Blood coagulation studies (Blood clotting tests)
There are various neuroimaging investigations that may detect cerebral sinus thrombosis. Cerebral edema and venous infarction may be apparent on any modality, but for the detection of the thrombus itself, the most commonly used tests are computed tomography (CT) and magnetic resonance imaging (MRI), both using various types of radiocontrast to perform a venogram and visualise the veins around the brain.
Computed tomography, with radiocontrast in the venous phase ("CT venography" or CTV), has a detection rate that in some regards exceeds that of MRI. The test involves injection into a vein (usually in the arm) of a radioopaque substance, and time is allowed for the bloodstream to carry it to the cerebral veins - at which point the scan is performed. It has a sensitivity of 75-100% (it detects 75-100% of all clots present), and a specificity of 81-100% (it would be incorrectly positive in 0-19%). In the first two weeks, the "empty delta sign" may be observed (in later stages, this sign may disappear).
Magnetic resonance venography employs the same principles, but uses MRI as a scanning modality. MRI has the advantage of being better at detecting damage to the brain itself as a result of the increased pressure on the obstructed veins, but it is not readily available in many hospitals and the interpretation may be difficult.
Cerebral angiography may demonstrate smaller clots than CT or MRI, and obstructed veins may give the "corkscrew appearance". This, however, requires puncture of the femoral artery with a sheath and advancing a thin tube through the blood vessels to the brain where radiocontrast is injected before X-ray images are obtained. It is therefore only performed if all other tests give unclear results or when other treatments may be administered during the same procedure.
Prevention consists of walking, drinking fluids and if currently hospitalized, changing of IV lines. Walking is especially suggested after a long period seated, particularly when one travels.
Evidence-based clinical guidelines were published in 2016 for the treatment of VTE.
A 2004 study suggested that the D-dimer blood test, already in use for the diagnosis of other forms of thrombosis, was abnormal (above 500 μg/l) in 34 out of 35 patients with cerebral sinus thrombosis, giving it a sensitivity of 97.1%, a negative predictive value of 99.6%, a specificity of 91.2%, and a positive predictive value of 55.7%. Furthermore, the level of the D-dimer correlated with the extent of the thrombosis. A subsequent study, however, showed that 10% of patients with confirmed thrombosis had a normal D-dimer, and in those who had presented with only a headache 26% had a normal D-dimer. The study concludes that D-dimer is not useful in the situations where it would make the most difference, namely in lower probability cases.
In addition to evaluating the symptoms above, the health care provider may find decreased or no blood pressure in the arm or leg.
Tests to determine any underlying cause for thrombosis or embolism and to confirm presence of the obstruction may include:
- Doppler ultrasound, especially duplex ultrasonography. It may also involve transcranial doppler exam of arteries to the brain
- Echocardiography, sometimes involving more specialized techniques such as Transesophageal echocardiography (TEE) or myocardial contrast echocardiography (MCE) to diagnose myocardial infarction
- Arteriography of the affected extremity or organ Digital subtraction angiography is useful in individuals where administration of radiopaque contrast material must be kept to a minimum.
- Magnetic resonance imaging (MRI)
- Blood tests for measuring elevated enzymes in the blood, including cardiac-specific troponin T and/or troponin I, myoglobins, and creatine kinase isoenzymes. These indicate embolisation to the heart that has caused myocardial infarction. Myoglobins and creatine kinase are also elevated in the blood in embolisation in other locations.
- Blood cultures may be done to identify the organism responsible for any causative infection
- Electrocardiography (ECG) for detecting myocardial infarction
- Angioscopy using a flexible fiberoptic catheter inserted directly into an artery.
Prevention of atherosclerosis, which is a major risk factor of arterial embolism, can be performed e.g. by dieting, physical exercise and smoking cessation.
In case of high risk for developing thromboembolism, antithrombotic medication such as warfarin or coumadin may be taken prophylactically. Antiplatelet drugs may also be needed.
There are no laboratory tests used to diagnose RVT.
Observing the patient's symptoms, medical history and imaging remain the fundamental source for diagnosing RVT. Imaging is used to detect the presence of a blood clot. In an abnormal kidney with RVT, a blood clot is present in the renal vein. In cases where the renal vein is suddenly and/or fully blocked, the kidneys will enlarge, reaching its maximum size within a week. An ultrasound imaging can be used to observe and track the size of the kidneys in RVT patients. Ultrasound is not efficient for use in detecting blood flow in the renal veins and artery. Instead a color doppler ultrasound may be used to detect renal blood flow. It is most commonly used to detect RVT in patients who have undergone renal transplantation. CT angiography is currently the top choice in diagnosing RVT. It is non-invasive, relatively cheap and fast with high accuracy. CT scanning can be used to detect renal enlargement, renal tumors, blood flow and other renal pathologies. An alternative is magnetic resonance angiography or MRA. It is non-invasive, fast and avoids radiation (unlike a CT scan) but it is relatively expensive. MRA produces detailed images of the renal blood flow, vesicle walls, the kidneys and any surrounding tissue. An inferior venocavography with selective venography can be used to rule out the diagnoses of RVT.
Currently laboratory testing is not as reliable as observation when it comes to defining the parameters of Thrombotic Storm. Careful evaluation of possible thrombosis in other organ systems is pertinent in expediting treatment to prevent fatality.Preliminary diagnosis consists of evidence documented with proper imaging studies such as CT scan, MRI, or echocardiography, which demonstrate a thromboembolic occlusion in the veins and/or arteries. Vascular occlusions mentioned must include at least two of the clinic events:
- Deep venous thrombosis affecting one (or more) limbs and/or pulmonary embolism.
- Cerebral vein thrombosis.
- Portal vein thrombosis, hepatic vein, or other intra-abdominal thrombotic events.
- Jugular vein thrombosis in the absence of ipsilateral arm vein thrombosis and in the absence of ipsilateral central venous access.
- Peripheral arterial occlusions, in the absence of underlying atherosclerotic vascular disease,
- resulting in extremity ischemia and/or infarction.
- Myocardial infarction, in the absence of severe coronary artery disease
- Stroke and/or transient ischemic attack, in the absence of severe atherosclerotic disease and at an age less than 60 years.
- Central retinal vein and/or central retinal arterial thrombosis.
- Small vessel thrombosis affecting one or more organs, systems, or tissue; must be documented by histopathology.
In addition to the previously noted vascular occlusions, development of different thromboembolic manifestations simultaneously or within one or two weeks must occur and the patient must have an underlying inherited or acquired hypercoagulable state (other than Antiphospholipid syndrome)
Treatment for Thrombotic Storm may include lifelong anticoagulation therapy and/or thrombolytic therapy, plasmapherisis, and corticosteroids. Studies have shown that when anticoagulant therapy is withheld recurrence of thrombosis usually follows. INR is closely monitored in the course of treatment.
Splenic infarction can be induced for the treatment of such conditions as portal hypertension or splenic injury. It can also be used prior to splenectomy for the prevention of blood loss.
It is known that diabetes causes changes to factors associated with coagulation and clotting, however not much is known of the risk of thromboembolism, or clots, in diabetic patients. There are some studies that show that diabetes increases the risk of thromboembolism; other studies show that diabetes does not increase the risk of thromboembolism. A study conducted in the Umea University Hospital, in Sweden, observed patients that were hospitalized due to an thromboembolism from 1997 to 1999. The researchers had access to patient information including age, sex, vein thromboembolism diagnosis, diagnostic methods, diabetes type and medical history. This study concluded that there is, in fact, an increased risk of thromboembolism development in diabetic patients, possibly due to factors associated with diabetes or diabetes itself. Diabetic patients are twice as likely to develop a thromboembolism than are non-diabetic patient. The exact mechanism of how diabetes increases the risk of clot formation remains unclear and could possibly be a future direction for study.
From previous studies, it is known that long distance air travel is associated with high risk of venous thrombosis. Long periods of inactivity in a limited amount of space may be a reason for the increased risk of blood clot formation. In addition, bent knees compresses the vein behind the knee (the popliteal vein) and the low humidity, low oxygen, high cabin pressure and consumption of alcohol concentrate the blood. A recent study, published in the British Journal of Haematology in 2014, determined which groups of people, are most at risk for developing a clot during or after a long flight. The study focused on 8755 frequent flying employees from international companies and organizations. It found that travelers who have recently undergone a surgical procedure or who have a malignant disease such as cancer or who are pregnant are most at risk. Preventative measures before flying may be taken in these at-risk groups as a solution.
Patients who have undergone kidney transplant have a high risk of developing RVT (about 0.4% to 6%). RVT is known to account for a large proportion of transplanted kidney failures due to technical problems (damage to the renal vein), clotting disorders, diabetes, consumption of ciclosporin or an unknown problem. Patients who have undergone a kidney transplant are commonly prescribed ciclosporin, an immunosuppressant drug which is known to reduce renal blood flow, increase platelet aggregation in the blood and cause damage to the endothelial tissue of the veins. In a clinical study conducted by the Nuffield Department of Surgery at the Oxford Transplant Centre, UK, transplant patients were given low doses of aspirin, which has a some anti-platelet activity. There is risk of bleeding in transplant patients when using anticoagulants like warfarin and herapin. Low dosage of aspirin was used as an alternative. The study concluded that a routine low-dose of aspirin in kidney transplant patients who are also taking ciclosporin significantly reduces the risk of RVT development.
The PESI and sPESI scoring tools can estimate mortality of patients. The Geneva prediction rules and Wells criteria are used to calculate a pre-test probability of patients to predict who has a pulmonary embolism. These scores are tools to be used with clinical judgment in deciding diagnostic testing and types of therapy. The PESI algorithm comprises 11 routinely available clinical variables. It puts the subjects into one of five classes (I-V), with 30-day mortality ranging from 1.1% to 24.5%. Those in classes I and II are low-risk and those in classes III-V are high-risk.
In people with a low or moderate suspicion of PE, a normal D-dimer level (shown in a blood test) is enough to exclude the possibility of thrombotic PE, with a three-month risk of thromboembolic events being 0.14%. D-dimer is highly sensitive but not specific (specificity around 50%). In other words, a positive D-dimer is not synonymous with PE, but a negative D-dimer is, with a good degree of certainty, an indication of absence of a PE. The typical cut off is 500 μg/L, although this varies based on the assay. However, in those over the age of 50, changing the cut-off value to the person's age multiplied by 10 μg/L (accounting for assay which has been used) is recommended as it decreases the number of falsely positive tests without missing any additional cases of PE.
When a PE is being suspected, several blood tests are done in order to exclude important secondary causes of PE. This includes a full blood count, clotting status (PT, aPTT, TT), and some screening tests (erythrocyte sedimentation rate, renal function, liver enzymes, electrolytes). If one of these is abnormal, further investigations might be warranted.
Troponin levels are increased in between 16–47% with pulmonary embolism.
The major cause of acute limb ischaemia is arterial thrombosis (85%), while embolic occlusion is responsible for 15% of cases. In rare instances, arterial aneurysm of the popliteal artery has been found to create a thrombosis or embolism resulting in ischaemia.
In order to treat acute limb ischaemia there are a series of things that can be done to determine where the occlusion is located, the severity, and what the cause was. To find out where the occlusion is located one of the things that can be done is simply a pulse examination to see where the heart rate can be detected and where it stops being sensed. Also there is a lower body temperature below the occlusion as well as paleness. A Doppler evaluation is used to show the extent and severity of the ischaemia by showing flow in smaller arteries. Other diagnostical tools are duplex ultrasonography, computed tomography angiography (CTA), and magnetic resonance angiography (MRA). The CTA and MRA are used most often because the duplex ultrasonography although non-invasive is not precise in planning revascularization. CTA uses radiation and may not pick up on vessels for revascularization that are distal to the occlusion, but it is much quicker than MRA. In treating acute limb ischaemia time is everything.
In the worst cases acute limb ischaemia progresses to critical limb ischaemia, and results in death or limb loss. Early detection and steps towards fixing the problem with limb-sparing techniques can salvage the limb. Compartment syndrome can occur because of acute limb ischaemia because of the biotoxins that accumulate distal to the occlusion resulting in edema.
Suspicion of factor V Leiden being the cause for any thrombotic event should be considered in any Caucasian patient below the age of 45, or in any person with a family history of venous thrombosis.
There are a few different methods by which this condition can be diagnosed. Most laboratories screen 'at risk' patients with either a snake venom (e.g. dilute Russell's viper venom time) based test or an aPTT based test. In both methods, the time it takes for blood to clot is decreased in the presence of the factor V Leiden mutation. This is done by running two tests simultaneously; one test is run in the presence of activated protein C (APC) and the other, in the absence. A ratio is determined based on the two tests and the results signify to the laboratory whether APC is working or not.
There is also a genetic test that can be done for this disorder. The mutation (a 1691G→A substitution) removes a cleavage site of the restriction endonuclease "MnlI", so PCR, treatment with "MnlI", and then DNA electrophoresis will give a diagnosis. Other PCR based assays such as iPLEX can also identify zygosity and frequency of the variant.
Echocardiography is the main diagnostic tool for LVT. A distinct mass is visible in the left ventricle. Computed Tomography and Magnetic Resonance Imaging are effective, but less common ways to detect LVT, due to their costs and risks. It is possible to assess whether a thrombus will become an embolus through echocardiography. Mobility and protrusion of the thrombus are two characteristics associated with increased embolic potential.
Early diagnosis still remains a challenge in CTEPH, with a median time of 14 months between symptom onset and diagnosis in expert centres. A suspicion of PH is often raised by echocardiography, but an invasive right heart catheterisation is required to confirm it. Once PH is diagnosed, the presence of thromboembolic disease requires imaging. The recommended diagnostic algorithm stresses the importance of initial investigation using an echocardiogram and V/Q scan and confirmation with right heart catheter and pulmonary angiography (PA).
Both V/Q scanning and modern multidetector CT angiography (CTPA) may be accurate methods for the detection of CTEPH, with excellent diagnostic efficacy in expert hands (sensitivity, specificity, and accuracy of 100%, 93.7%, and 96.5% for V/Q and 96.1%, 95.2%, and 95.6% for CTPA). However, CTPA alone cannot exclude the disease, but may help identify pulmonary artery distension resulting in left main coronary artery compression, pulmonary parenchymal lesions (e.g. as complications from previous pulmonary infarctions), and bleeding from bronchial collateral arteries. Today, the gold standard imaging remains invasive pulmonary angiography (PAG) using native angiograms or a digital subtraction technique.
Superficial vein thrombosis (SVT) is a type of venous thrombosis, or a blood clot in a vein, which forms in a superficial vein near the surface of the body. Usually there is thrombophlebitis, which is an inflammatory reaction around a thrombosed vein, presenting as a painful induration with erythema. SVT has a limited clinical significance (in terms of morbidity and mortality) when compared to a deep vein thrombosis (DVT), which occurs deeper in the body, at the deep venous system level. If the blood clot is too near from the sapheno-femoral junction there is a bigger risk of pulmonary embolism.