Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The diagnostic workup is directed by the presenting signs and symptoms, and can involve:
- blood counts, clotting studies, and other laboratory testing
- imaging tests (ultrasound, CT scan, MRI, sometimes angiography, and rarely nuclear medicine scans)
- biopsy of the tumor.
Patients uniformly show severe thrombocytopenia, low fibrinogen levels, high fibrin degradation products (due to fibrinolysis), and microangiopathic hemolysis.
Genetic tests are available for the "ENG", "ACVRL1" and "MADH4" mutations. Testing is not always needed for diagnosis, because the symptoms are sufficient to distinguish the disease from other diagnoses. There are situations in which testing can be particularly useful. Firstly, children and young adults with a parent with definite HHT may have limited symptoms, yet be at risk from some of the complications mentioned above; if the mutation is known in the affected parent, absence of this mutation in the child would prevent the need for screening tests. Furthermore, genetic testing may confirm the diagnosis in those with limited symptoms who otherwise would have been labeled "possible HHT" (see below).
Genetic diagnosis in HHT is difficult, as mutations occur in numerous different locations in the linked genes, without particular mutations being highly frequent (as opposed to, for instance, the ΔF508 mutation in cystic fibrosis). Sequence analysis of the involved genes is therefore the most useful approach (sensitivity 75%), followed by additional testing to detect large deletions and duplications (additional 10%). Not all mutations in these genes have been linked with disease.
Mutations in the "MADH4" gene is usually associated with juvenile polyposis, and detection of such a mutation would indicate a need to screen the patient and affected relatives for polyps and tumors of the large intestine.
Management consists of vigilant observation over days to detect progression. The subgaleal space is capable of holding up to 50% of a newborn baby's blood and can therefore result in acute shock and death. Fluid bolus may be required if blood loss is significant and patient becomes tachycardic. Transfusion and phototherapy may be necessary. Investigation for coagulopathy may be indicated.
Identification of AVMs requires detailed medical imaging of the organs most commonly affected by these lesions. Not all AVMs cause symptoms or are at risk of doing so, and hence there is a degree of variation between specialists as to whether such investigations would be performed, and by which modality; often, decisions on this issue are reached together with the patient.
Lung AVMs may be suspected because of the abnormal appearance of the lungs on a chest X-ray, or hypoxia (low oxygen levels) on pulse oximetry or arterial blood gas determination. Bubble contrast echocardiography (bubble echo) may be used as a screening tool to identify abnormal connections between the lung arteries and veins. This involves the injection of agitated saline into a vein, followed by ultrasound-based imaging of the heart. Normally, the lungs remove small air bubbles from the circulation, and they are therefore only seen in the right atrium and the right ventricle. If an AVM is present, bubbles appear in the left atrium and left ventricle, usually 3–10 cardiac cycles after the right side; this is slower than in heart defects, in which there are direct connections between the right and left side of the heart. A larger number of bubbles is more likely to indicate the presence of an AVM. Bubble echo is not a perfect screening tool as it can miss smaller AVMs and does not identify the site of AVMs. Often contrast-enhanced computed tomography (CT angiography) is used to identify lung lesions; this modality has a sensitivity of over 90%. It may be possible to omit contrast administration on modern CT scanners. Echocardiography is also used if there is a suspicion of pulmonary hypertension or high-output cardiac failure due to large liver lesions, sometimes followed by cardiac catheterization to measure the pressures inside the various chambers of the heart.
Liver AVMs may be suspected because of abnormal liver function tests in the blood, because the symptoms of heart failure develop, or because of jaundice or other symptoms of liver dysfunction. The most reliable initial screening test is Doppler ultrasonography of the liver; this has a very high sensitivity for identifying vascular lesions in the liver. If necessary, contrast-enhanced CT may be used to further characterize AVMs. It is extremely common to find incidental nodules on liver scans, most commonly due to focal nodular hyperplasia (FNH), as these are a hundredfold times more common in HHT compared to the general population. FNH is regarded as harmless. Generally, tumor markers and additional imaging modalities are used to differentiate between FNH and malignant tumors of the liver. Liver biopsy is discouraged in people with HHT as the risk of hemorrhage from liver AVMs may be significant. Liver scans may be useful if someone is suspected of HHT, but does not meet the criteria (see below) unless liver lesions can be demonstrated.
Brain AVMs may be detected on computed tomography angiography (CTA or CT angio) or magnetic resonance angiography (MRA); CTA is better in showing the vessels themselves, and MRA provides more detail about the relationship between an AVM and surrounding brain tissue. In general, MRI is recommended. Various types of vascular malformations may be encountered: AVMs, micro-AVMs, telangiectasias and arteriovenous fistulas. If surgery, embolization, or other treatment is contemplated (see below), cerebral angiography may be required to get sufficient detail of the vessels. This procedure carries a small risk of stroke (0.5%) and is therefore limited to specific circumstances. Recent professional guidelines recommend that all children with suspected or definite HHT undergo a brain MRI early in life to identify AVMs that can cause major complications. Others suggest that screening for cerebral AVMs is probably unnecessary in those who are not experiencing any neurological symptoms, because most lesions discovered on screening scans would not require treatment, creating undesirable conundrums.
The amount of fresh frozen plasma required to reverse disseminated intravascular coagulation associated with purpura fulminans may lead to complications of fluid overload and death, especially in neonates, such as transfusion-related acute lung injury. Exposure to multiple plasma donors over time increases the cumulative risk for transfusion-associated viral infection and allergic reaction to donor proteins found in fresh frozen plasma.
Allergic reactions and alloantibody formation are also potential complications, as with any protein replacement therapy.
Concomitant warfarin therapy in subjects with congenital protein C deficiency is associated with an increased risk of warfarin skin necrosis.
Treatment for light bruises is minimal and may include RICE (rest, ice, compression, elevation), painkillers (particularly NSAIDs) and, later in recovery, light stretching exercises. Particularly, immediate application of ice while elevating the area may reduce or completely prevent swelling by restricting blood flow to the area and preventing internal bleeding. Rest and preventing re-injury is essential for rapid recovery. Applying a medicated cream containing mucopolysaccharide polysulfuric acid (e.g., Hirudoid) may also speed the healing process. Other topical creams containing skin-fortifying ingredients, including but not limited to retinol or alpha hydroxy acids, such as DerMend, can improve the appearance of bruising faster than if left to heal on its own.
Very gently massaging the area and applying heat may encourage blood flow and relieve pain according to the gate control theory of pain, although causing additional pain may indicate the massage is exacerbating the injury. As for most injuries, these techniques should not be applied until at least three days following the initial damage to ensure all internal bleeding has stopped, because although increasing blood flow will allow more healing factors into the area and encourage drainage, if the injury is still bleeding this will allow more blood to seep out of the wound and cause the bruise to become worse.
In most cases hematomas spontaneously revert, but in cases of large hematomas or those localized in certain organs ("e.g.", the brain), the physician may optionally perform a puncture of the hematoma to allow the blood to exit.
It may cause seizures but cephalohematoma and caput will not cause seizure
Purpura hemorrhagica may be prevented by proper management during an outbreak of strangles. This includes isolation of infected horses, disinfection of fomites, and good hygiene by caretakers. Affected horses should be isolated at least one month following infection. Exposed horses should have their temperature taken daily and should be quarantined if it becomes elevated. Prophylactic antimicrobial treatment is not recommended.
Vaccination can reduce the incidence and severity of the disease. However, horses with high SeM antibody titers are more likely to develop purpura hemorrhagica following vaccination and so these horses should not be vaccinated. Titers may be measured by ELISA.
The cardinal features of purpura investigations are the same as those of disseminated intravascular coagulation: prolonged plasma clotting times, thrombocytopenia, reduced plasma fibrinogen concentration, increased plasma fibrin-degradation products and occasionally microangiopathic haemolysis.
Petechiae on the face and conjunctiva (eyes) can be a sign of a death by asphyxiation, particularly when involving reduced venous return from the head (such as in strangulation). Petechiae are thought to result from an increase of pressure in the veins of the head and hypoxic damage to endothelia of blood vessels.
Petechiae can be used by police investigators in determining if strangulation has been part of an attack. The documentation of the presence of petechiae on a victim can help police investigators prove the case. Petechiae resulting from strangulation can be relatively tiny and light in color to very bright and pronounced. Petechiae may be seen on the face, in the whites of the eyes or on the inside of the eyelids.
Management of KMS, particularly in severe cases, can be complex and require the joint effort of multiple subspecialists. This is a rare disease with no consensus treatment guidelines or large randomized controlled trials to guide therapy.
Purpura is a condition of red or purple discolored spots on the skin that do not blanch on applying pressure. The spots are caused by bleeding underneath the skin usually secondary to vasculitis or dietary deficiency of vitamin C (scurvy). They measure 0.3–1 cm (3–10 mm), whereas petechiae measure less than 3 mm, and ecchymoses greater than 1 cm.
Purpura is common with typhus and can be present with meningitis caused by meningococci or septicaemia. In particular, meningococcus ("Neisseria meningitidis"), a Gram-negative diplococcus organism, releases endotoxin when it lyses. Endotoxin activates the Hageman factor (clotting factor XII), which causes disseminated intravascular coagulation (DIC). The DIC is what appears as a rash on the affected individual.
Purpura are a common and nonspecific medical sign; however, the underlying mechanism commonly involves one of:
- Platelet disorders (thrombocytopenic purpura)
- Primary thrombocytopenic purpura
- Secondary thrombocytopenic purpura
- Post-transfusion purpura
- Vascular disorders (nonthrombocytopenic purpura)
- Microvascular injury, as seen in senile (old age) purpura, when blood vessels are more easily damaged
- Hypertensive states
- Deficient vascular support
- Vasculitis, as in the case of Henoch–Schönlein purpura
- Coagulation disorders
- Disseminated intravascular coagulation (DIC)
- Scurvy (vitamin C deficiency) - defect in collagen synthesis due to lack of hydroxylation of procollagen results in weakened capillary walls and cells
- Meningococcemia
- Cocaine use with concomitant use of the one-time chemotherapy drug and now veterinary deworming agent levamisole can cause purpura of the ears, face, trunk, or extremities, sometimes needing reconstructive surgery. Levamisole is purportedly a common cutting agent.
- Decomposition of blood vessels including purpura is a symptom of acute radiation poisoning in excess of 2 Grays of radiation exposure. This is an uncommon cause in general, but is commonly seen in victims of nuclear disaster.
Cases of psychogenic purpura are also described in the medical literature, some claimed to be due to "autoerythrocyte sensitization". Other studies suggest the local (cutaneous) activity of tissue plasminogen activator can be increased in psychogenic purpura, leading to substantial amounts of localized plasmin activity, rapid degradation of fibrin clots, and resultant bleeding. Petechial rash is also characteristic of a rickettsial infection.
A petechia, plural petechiae, is a small (1–2 mm) red or purple spot on the skin, caused by a minor bleed from broken capillary blood vessels.
"Petechia" refers to one of the three descriptive types of bleeding into the skin differentiated by size, the other two being purpura and ecchymosis. Petechiae are by definition less than 3 mm.
The term is almost always used in the plural, since a single lesion is seldom noticed or significant.
Prognosis is good with early, aggressive treatment (92% survival in one study).
Universal angiomatosis (also known as "Generalized telangiectasia") is a bleeding disease that affects the blood vessels of the skin and mucous membranes as well as other parts of the body.
Erythema disappears on finger pressure (blanching), while purpura or bleeding in the skin and pigmentation do not. There is no temperature elevation, unless it is associated with the dilation of arteries in the deeper layer of the skin.
A healthcare provider can usually diagnose a port-wine stain based entirely upon the history and appearance. In unusual cases, a skin biopsy may be needed to confirm the diagnosis. Depending on the location of the birthmark and other associated symptoms, a physician may choose to order a measurement of intraocular pressure or X-ray of the skull.
A MRI scan of the brain may be performed (under anesthesia) on infants who have a port-wine stain in the head area in order to check for signs of Sturge-Weber syndrome.
If the port-wine stain is inside the mouth, a provider may check the insides of a newborn baby's throat with a scope to see if there are any changes (growths) other than just the color.
If the port-wine stain is around the eye or on the eyelid, a referral may be made to an optometrist or ophthalmologist for a test of the ocular pressures in that eye. If swelling occurs in the port-wine stain, it may cause vision problems, glaucoma, or blindness.
Erythema (from the Greek "erythros", meaning red) is redness of the skin or mucous membranes, caused by hyperemia (increased blood flow) in superficial capillaries. It occurs with any skin injury, infection, or inflammation. Examples of erythema not associated with pathology include nervous blushes.
Due to its overwhelming incidence on the gingiva, the condition is often associated with two other diseases, though not because they occur together. Instead, the three are associated with each other because they appear frequently on gingiva—peripheral giant cell granuloma and peripheral ossifying fibroma. Detailed analysis can be used to distinguish these conditions.
Bruises can be scored on a scale from 0-5 to categorize the severity and danger of the injury.
The harm score is determined by the extent and severity of the fractures to the organs and tissues causing the bruising, in turn depending on multiple factors. For example, a contracted muscle will bruise more severely, as will tissues crushed against underlying bone. Capillaries vary in strength, stiffness and toughness, which can also vary by age and medical conditions.
An alternate bruise severity ranking system called the Chien Intensity Scale is slowly growing in popularity in some research circles. Although not widely used, the Chien Intensity Scale is used by institutes including the Ryan Mackey Memorial Research Institute and the Sydney Medical Center.
Low levels of damaging forces produce small bruises and generally cause the individual to feel minor pain straight away. Repeated impacts worsen bruises, increasing the harm level. Normally, light bruises heal nearly completely within two weeks, although duration is affected by variation in severity and individual healing processes; generally, more severe or deeper bruises take somewhat longer.
Severe bruising (harm score 2-3) may be dangerous or cause serious complications. Further bleeding and excess fluid may accumulate causing a hard, fluctuating lump or swelling hematoma. This has the potential to cause compartment syndrome as the swelling cuts off blood flow to the tissues. The trauma that induced the bruise may also have caused other severe and potentially fatal harm to internal organs. For example, impacts to the head can cause traumatic brain injury: bleeding, bruising and massive swelling of the brain with the potential to cause concussion, coma and death. Treatment for brain bruising may involve emergency surgery to relieve the pressure on the brain.
Damage that causes bruising can also cause bones to be broken, tendons or muscles to be strained, ligaments to be sprained, or other tissue to be damaged. The symptoms and signs of these injuries may initially appear to be those of simple bruising. Abdominal bruising or severe injuries that cause difficulty in moving a limb or the feeling of liquid under the skin may indicate life-threatening injury and require the attention of a physician.
Prognosis is usually good, however recurrence may happen with rate up to 16%. Presence of myxoid structures in the pyogenic granuloma may be the main cause of recurrence.
Although pyogenic granulomas are not infectious or malignant, treatment may be considered because of bleeding or ulceration. Frequently, pyogenic granulomas are treated with electrodesiccation (cauterization) and curettage (excision), though laser treatment using pulsed dye laser or CO laser is often effective.
Several reports have demonstrated the efficacy of topical application of the beta-adrenergic antagonist timolol in the treatment of pediatric pyogenic granuloma.
There is usually no treatment if the pyogenic granuloma occurs during pregnancy since the lesion may heal spontaneously. Recurrent bleeding in either oral or nasal lesions may necessitate excision and cauterization sooner, however. If aesthetics are a concern, then treatment may be pursued as well. Usually, only minor surgery may be needed, along with a dental cleaning for oral lesions to remove any calculus or other source of irritation. For nasal lesions, nose-picking should be discouraged.
Following are some complications of coagulopathies, some of them caused by their treatments:
Treatment is directed at the prevention of haemorrhagic shock. Standard dose prednisolone does not increase the platelet count. High-dose methylprednisolone therapy in children with Onyalai has been shown to improve platelet count and reduce the requirement for transfusions. Vincristine sulphate may be of benefit to some patients. Splenectomy is indicated in patients with severe uncontrollable haemorrhage. High-dose intravenous gammaglobulin may help in increasing the platelet count and cessation of haemorrhage.
Acroangiodermatitis of Mali (also known as "Mali acroangiodermatitis" and "Pseudo-Kaposi's sarcoma") is a rare cutaneous condition often characterized by purplish-blue to brown papules and plaques on the medial and lateral malleolus of both legs.
Acroangiodermatitis is a rare skin condition characterised by hyperplasia of pre-existing vasculature due to venous hypertension from severe chronic venous stasis. It is associated with amputees, haemodialysis (HD) patients with arteriovenous (AV) shunts, and patients with paralysed legs, hepatitis C, chronic venous insufficiency or AV malformations (AVM). Patients present with itchy, painful, confluent, violaceous or brown-black macules, papules or plaques usually at the distal lower limbs. There may be ulceration and bleeding. The histologic features are capillary proliferation and perivascular inflammation involving eosinophils in the dermis with minimal epidermal changes. Management includes compression therapy, wound care and surgical correction of AVM. Dapsone combined with leg elevation and compression, and erythromycin for HD patients with AV fistulas have also been reported. The lesions may persist for years with complications like ulceration, bleeding and infection.