Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Treatment of asymptomatic congenital dysfibrinogenemia depends in part on the expectations of developing bleeding and/or thrombotic complications as estimated based on the history of family members with the disorder and, where available, determination of the exact mutation causing the disorder plus the propensity of the particular mutation type to develop these complications. In general, individuals with this disorder require regular follow-up and multidiscipline management prior to surgery, pregnancy, and giving childbirth. Women with the disorder appear to have an increased rate of miscarriages and all individuals with fibrinogen activity in clotting tests below 0.5 grams/liter are prone to bleeding and spontaneous abortions. Women with multiple miscarriages and individuals with excessively low fibrinogen activity levels should be considered for prophylaxis therapy with fibrinogen replacement during pregnancy, delivery, and/or surgery.
When vWD is suspected, blood plasma of a patient must be investigated for quantitative and qualitative deficiencies of vWF. This is achieved by measuring the amount of vWF in a vWF antigen assay and the functionality of vWF with a glycoprotein (GP)Ib binding assay, a collagen binding assay, or a ristocetin cofactor activity (RiCof) or ristocetin induced platelet agglutination (RIPA) assays. Factor VIII levels are also performed because factor VIII is bound to vWF which protects the factor VIII from rapid breakdown within the blood. Deficiency of vWF can then lead to a reduction in factor VIII levels, which explains the elevation in PTT. Normal levels do not exclude all forms of vWD, particularly type 2, which may only be revealed by investigating platelet interaction with subendothelium under flow, a highly specialized coagulation study not routinely performed in most medical laboratories. A platelet aggregation assay will show an abnormal response to ristocetin with normal responses to the other agonists used. A platelet function assay may give an abnormal collagen/epinephrine closure time, and in most cases, a normal collagen/ADP time. Type 2N may be considered if factor VIII levels are disproportionately low, but confirmation requires a "factor VIII binding" assay. Additional laboratory tests that help classify sub-types of vWD include von-willebrand multimer analysis, modified ristocetin induced platelet aggregation assay and vWF propeptide to vWF antigen ratio propeptide. In cases of suspected acquired von-Willebrand syndrome, a mixing study study (analysis of patient plasma along with pooled normal plasma/PNP and a mixture of the two tested immediately, at one hour, and at two hours) should be performed. Detection of vWD is complicated by vWF being an acute phase reactant with levels rising in infection, pregnancy, and stress.
Other tests performed in any patient with bleeding problems are a complete blood count-CBC (especially platelet counts), activated partial thromboplastin time-APTT, prothrombin time with International Normalized Ratio-PTINR, thrombin time-TT, and fibrinogen level. Testing for factor IX may also be performed if hemophilia B is suspected. Other coagulation factor assays may be performed depending on the results of a coagulation screen. Patients with von Willebrand disease typically display a normal prothrombin time and a variable prolongation of partial thromboplastin time.
The testing for vWD can be influenced by laboratory procedures. Numerous variables exist in the testing procedure that may affect the validity of the test results and may result in a missed or erroneous diagnosis. The chance of procedural errors are typically greatest during the preanalytical phase (during collecting storage and transportation of the specimen) especially when the testing is contracted to an outside facility and the specimen is frozen and transported long distances. Diagnostic errors are not uncommon, and the rate of testing proficiency varies amongst laboratories, with error rates ranging from 7 to 22% in some studies to as high as 60% in cases of misclassification of vWD subtype. To increase the probability of a proper diagnosis, testing should be done at a facility with immediate on-site processing in a specialized coagulation laboratory.
In a study of 189 individuals diagnosed with congenital dysfibrinogenemia, ~33% were asymptomatic, ~47% experienced episodic bleeding, and ~20% experienced episodic thromboses. Due to the rareness of this disorder, treatment of individuals with these presentations are based primarily on case reports, guidelines set by the United Kingdom, and expert opinions rather than controlled clinical studies.
People may be diagnosed after prolonged and/or recurring bleeding episodes. Children and adults may also be diagnosed after profuse bleeding after a trauma or tooth extraction. Ultimately, a laboratory diagnosis is usually required. This would utilize platelet aggregation studies and flow cytometry.
The diagnostic workup is directed by the presenting signs and symptoms, and can involve:
- blood counts, clotting studies, and other laboratory testing
- imaging tests (ultrasound, CT scan, MRI, sometimes angiography, and rarely nuclear medicine scans)
- biopsy of the tumor.
Patients uniformly show severe thrombocytopenia, low fibrinogen levels, high fibrin degradation products (due to fibrinolysis), and microangiopathic hemolysis.
Aside from observing the symptoms characteristic of X-linked thrombocytopenia in infancy (easy bruising, mild anemia, mucosal bleeding), molecular genetic testing would be done to confirm the diagnosis. Furthermore, flow cytometry or western blotting would be used to test for decreased or absent amounts of WASp. Family history would also assist in diagnosis, with specific attention to maternally related males with "WAS"-related disorders. Because "WAS"-related disorders are phenotypically similar, it is important to confirm the absence of the diagnostic criteria for Wiskoff-Aldrich syndrome at the outset. These diagnostic criteria include eczema, lymphoma, autoimmune disorder, recurrent bacterial or viral infections, family history of maternally related males with a "WAS"-related disorder, and absent or decreased "WASp". X-linked congenital neutropenia can be diagnostically distinguished from XLT with persistent neutropenia, arrested development of the bone marrow, and normal "WASp" expression.
There has been no general recommendation for treatment of patients with Giant Platelet Disorders, as there are many different specific classifications to further categorize this disorder which each need differing treatments. Platelet transfusion is the main treatment for people presenting with bleeding symptoms. There have been experiments with DDAVP (1-deamino-8-arginine vasopressin) and splenectomy on people with Giant platelet disorders with mixed results, making this type of treatment contentious.
The diagnosis of this condition can be done via the following:
- Flow cytometry
- Bleeding time analysis
Anti-platelet autoantibodies in a pregnant woman with ITP will attack the patient's own platelets and will also cross the placenta and react against fetal platelets. Therefore, ITP is a significant cause of fetal and neonatal immune thrombocytopenia. Approximately 10% of newborns affected by ITP will have platelet counts <50,000/uL and 1% to 2% will have a risk of intracerebral hemorrhage comparable to infants with neonatal alloimmune thrombocytopenia (NAIT).
No lab test can reliably predict if neonatal thrombocytopenia will occur. The risk of neonatal thrombocytopenia is increased with:
- Mothers with a history of splenectomy for ITP
- Mothers who had a previous infant affected with ITP
- Gestational (maternal) platelet count less than 100,000/uL
It is recommended that pregnant women with thrombocytopenia or a previous diagnosis of ITP should be tested for serum antiplatelet antibodies. A woman with symptomatic thrombocytopenia and an identifiable antiplatelet antibody should be started on therapy for their ITP which may include steroids or IVIG. Fetal blood analysis to determine the platelet count is not generally performed as ITP-induced thrombocytopenia in the fetus is generally less severe than NAIT. Platelet transfusions may be performed in newborns, depending on the degree of thrombocytopenia. It is recommended that neonates be followed with serial platelet counts for the first few days after birth.,
Diagnosis of inherited hypoprothrombinemia, relies heavily on a patient's medical history, family history of bleeding issues, and lab exams performed by a hematologist. A physical examination by a general physician should also be performed in order to determine whether the condition is congenital or acquired, as well as ruling out other possible conditions with similar symptoms. For acquired forms, information must be taken regarding current diseases and medications taken by the patient, if applicable.
Lab tests that are performed to determine diagnosis:
1. Factor Assays: To observe the performance of specific factors (II) to identify missing/poorly performing factors. These lab tests are typically performed first in order to determine the status of the factor.
2. Prothrombin Blood Test: Determines if patient has deficient or low levels of Factor II.
3. Vitamin K1 Test: Performed to evaluate bleeding of unknown causes, nosebleeds, and identified bruising. To accomplish this, a band is wrapped around the patient's arm, 4 inches above the superficial vein site in the elbow pit. The vein is penetrated with the needle and amount of blood required for testing is obtained. Decreased vitamin K levels are suggestive of hypoprothrombinemia. However, this exam is rarely used as a Prothrombin Blood Test is performed beforehand.
Hydroxycarbamide and anagrelide are contraindicated during pregnancy and nursing. Essential thrombocytosis can be linked with a three-fold increase in risk of miscarriage. Throughout pregnancy, close monitoring of the mother and fetus is recommended. Low-dose low molecular weight heparin (e.g. enoxaparin) may be used. For life-threatening complications, the platelet count can be reduced rapidly using platelet apheresis, a procedure that removes platelets from the blood and returns the remainder to the patient.
A 28 month old girl, showed symptoms from 8 months of age and consisted of complaints of painful bruises over lower limbs, and disturbed, painful sleep at night. Family history revealed older brother also suffered similar problems and died at age of two years possibly due to bleeding - no diagnosis was confirmed. Complete blood count and blood smear was determined as normal. No abnormality in fibrinogen, liver function test, and bleeding time. However, prothrombin levels were less than 1% so patient was transfused with fresh frozen plasma (FFP). Post transfusion methods, patient is now 28 months old and living healthy life. The only treatment that is needed to date is for the painful bruises, which the patient is given FFP every 5-6 weeks.
Twelve day old boy admitted for symptoms consisting of blood stained vomiting and dark colored stool. Upon admission into hospital, patient received vitamin K and FFP transfusion. No family history of similarity in symptoms that were presented. At 40 days old, patient showed symptoms of tonic posturing and constant vomiting. CT scan revealed subdural hemorrhage, and other testing showed low hb levels of 7%, platelets at 3.5 lakhs/cu mm. PT examination was 51 seconds and aPTT at 87 seconds. Prothrombin activity levels were less than 1%. All other exams revealed no abnormalities. Treatment methods included vitamin K and FFP, as well as ventilator support and packed red blood cell transfusion (PRBC). At half a year of age, condition consisted of possible poor neurological outcome secondary to CNS bleeding. Treatment of very frequent transfusion was needed for patient.
Recent study illustrated a patient with 2 weeks of continuous bleeding, with presence of epistaxis, melena, hematuria, and pruritic rash with no previous bleeding history. Vitals were all within normal range, however, presence of ecchymoses was visible in chest, back and upper areas. Lab exams revealed prolonged prothrombin time (PT) of 34.4 and acquired partial thromboplastin time (aPTT) of 81.7, as well as elevated liver function tests. Discontinuation of atorvastatin, caused liver enzymes to go back to normal. Treatment of vitamin K, antibiotics, and fresh frozen plasma (FFP) did not have an impact on coagulopathy. Mixing of PT and aPTT was performed in order to further evaluate coagulopathy and revealed no correction. Factor activity assays were performed to determine the presence of a specific one. Testing revealed that factor II activity could not be quantified. Further studies showed that acquired factor II inhibitor was present without the lupus anticoagulant, with no clear cause associated with the condition. Aimed to control bleeding and getting rid of the inhibitor through directly treating the underlying disease or through immunosuppressive therapy. Corticosteroids and intravenous immunoglobulin improved the PT and aPTT. Did not improve bleeding conditions until treatment of transfusion with activated PCC. Treatment of inhibitor required Rituximab, which was shown to increase factor II levels to 264%. Study shows that when a patient with no history of coagulopathy presents themselves with hemorrhagic diathesis, direct testing of a factor II inhibitor should be performed initially.
The differential diagnosis for Bernard–Soulier syndrome includes both Glanzmann thrombasthenia and pediatric Von Willebrand disease. BSS platelets do not aggregate to ristocetin, and this defect is not corrected by the addition of normal plasma, distinguishing it from von Willebrand disease.
In terms of treatment/management, bleeding events can be controlled by platelet transfusion.
Most heterozygotes, with few exceptions, do not have a bleeding diathesis. BSS presents as a bleeding disorder due to the inability of platelets to bind and aggregate at sites of vascular endothelial injury. In the event of an individual with mucosal bleeding tranexamic acid can be given.
The affected individual may need to avoid contact sports and medications such as aspirin, which can increase the possibility of bleeding. A potential complication is the possibility of the individual producing antiplatelet antibodies
TTP is characterized by thrombotic microangiopathy (TMA), the formation of blood clots in small blood vessels throughout the body, which can lead to microangiopathic hemolytic anemia and thrombocytopenia. This characteristic is shared by two related syndromes, hemolytic-uremic syndrome (HUS) and atypical hemolytic uremic syndrome (aHUS). Consequently, differential diagnosis of these TMA-causing diseases is essential. In addition to TMA, one or more of the following symptoms may be present in each of these diseases: neurological symptoms (e.g. confusion, cerebral convulsions seizures,); kidney impairment (e.g. elevated creatinine, decreased estimated glomerular filtration rate [eGFR], abnormal urinalysis); and gastrointestinal (GI) symptoms (e.g. diarrhea nausea/vomiting, abdominal pain, gastroenteritis. Unlike HUS and aHUS, TTP is known to be caused by an acquired defect in the ADAMTS13 protein, so a lab test showing ≤5% of normal ADAMTS13 levels is indicative of TTP. ADAMTS13 levels above 5%, coupled with a positive test for shiga-toxin/enterohemorrhagic "E. coli" (EHEC), are more likely indicative of HUS, whereas absence of shiga-toxin/EHEC can confirm a diagnosis of aHUS.
For patients with vWD type 1 and vWD type 2A, desmopressin is available as different preparations, recommended for use in cases of minor trauma, or in preparation for dental or minor surgical procedures. Desmopressin stimulates the release of vWF from the Weibel-Palade bodies of endothelial cells, thereby increasing the levels of vWF (as well as coagulant factor VIII) three- to five-fold. Desmopressin is also available as a preparation for intranasal administration (Stimate) and as a preparation for intravenous administration. Recently, the FDA has approved the use of Baxalta’s Vonvendi. This is the first recombinant form of vWF. The effectiveness of this treatment is different than desmopressin because it only contains vWF, not vWF with the addition of FVIII. This treatment is only recommended for use by individuals who are 18 years of age or older.
Desmopressin is contraindicated in vWD type 2b because of the risk of aggravated thrombocytopenia and thrombotic complications. Desmopressin is probably not effective in vWD type 2M and is rarely effective in vWD type 2N. It is totally ineffective in vWD type 3.
For women with heavy menstrual bleeding, estrogen-containing oral contraceptive medications are effective in reducing the frequency and duration of the menstrual periods. Estrogen and progesterone compounds available for use in the correction of menorrhagia are ethinylestradiol and levonorgestrel (Levona, Nordette, Lutera, Trivora). Administration of ethinylestradiol diminishes the secretion of luteinizing hormone and follicle-stimulating hormone from the pituitary, leading to stabilization of the endometrial surface of the uterus.
Desmopressin is a synthetic analog of the natural antidiuretic hormone vasopressin. Its overuse can lead to water retention and dilutional hyponatremia with consequent convulsion.
For patients with vWD scheduled for surgery and cases of vWD disease complicated by clinically significant hemorrhage, human-derived medium purity factor VIII concentrates, which also contain von Willebrand factors, are available for prophylaxis and treatment. Humate P, Alphanate, Wilate and Koate HP are commercially available for prophylaxis and treatment of vWD. Monoclonally purified factor VIII concentrates and recombinant factor VIII concentrates contain insignificant quantity of vWF, so are not clinically useful.
Development of alloantibodies occurs in 10-15% of patients receiving human-derived medium-purity factor VIII concentrates and the risk of allergic reactions including anaphylaxis must be considered when administering these preparations. Administration of the latter is also associated with increased risk of venous thromboembolic complications.
Blood transfusions are given as needed to correct anemia and hypotension secondary to hypovolemia. Infusion of platelet concentrates is recommended for correction of hemorrhage associated with platelet-type vWD.
The antifibrinolytic agents epsilon amino caproic acid and tranexamic acid are useful adjuncts in the management of vWD complicated by clinical hemorrhage. The use topical thrombin JMI and topical Tisseel VH are effective adjuncts for correction of hemorrhage from wounds.
Recent studies have found that the life expectancy of males with XLT is not significantly affected. Individuals with XLT typically experience milder symptoms than those with other "WAS"-related disorders. For this reason, the long term prognosis for individuals with XLT is generally positive as long as symptoms are managed appropriately. Enhanced treatment methods in the past two decades have significantly improved the prognosis as well.
Management of KMS, particularly in severe cases, can be complex and require the joint effort of multiple subspecialists. This is a rare disease with no consensus treatment guidelines or large randomized controlled trials to guide therapy.
HPS was identified among healthy blood donors in the north-eastern part of the Indian subcontinent, characterized by absent bleeding symptoms, mild to severe thrombocytopenia (platelets rarely <50 X 109/L)with giant platelets (Mean platelet volume 10fL) and normal platelet aggregation studies with absent MYH9 mutation.
In the blood donors with HPS authors found a statistically higher MPV, RDW and a lower platelet count and platelet biomass.
At present the diagnosis of HPS is made by ascertaining the ethnicity of the patient, as well as assessing for conditions causing acquired thrombocytopenias, and after also excluding the known inherited giant platelet disorders(IGPD) and other congenital thrombocytopenias. Unfortunately some patients with IGPD are treated inappropriately with corticosteroids, immunoglobulin infusions and even splenectomy.
It is extremely important to recognize Harris platelet syndrome, as one third the population of certain parts of Indian subcontinent is affected.
In adults, particularly those living in areas with a high prevalence of "Helicobacter pylori" (which normally inhabits the stomach wall and has been associated with peptic ulcers), identification and treatment of this infection has been shown to improve platelet counts in a third of patients. In a fifth, the platelet count normalized completely; this response rate is similar to that found in treatment with rituximab, which is more expensive and less safe. In children, this approach is not supported by evidence, except in high prevalence areas. Urea breath testing and stool antigen testing perform better than serology-based tests; moreover, serology may be false-positive after treatment with IVIG.
HIT may be suspected if blood tests show a falling platelet count in someone receiving heparin, even if the heparin has already been discontinued. Professional guidelines recommend that people receiving heparin have a complete blood count (which includes a platelet count) on a regular basis while receiving heparin.
However, not all people with a falling platelet count while receiving heparin turn out to have HIT. The timing, severity of the thrombocytopenia, the occurrence of new thrombosis, and the presence of alternative explanations, all determine the likelihood that HIT is present. A commonly used score to predict the likelihood of HIT is the "4 Ts" score introduced in 2003. A score of 0–8 points is generated; if the score is 0-3, HIT is unlikely. A score of 4–5 indicates intermediate probability, while a score of 6–8 makes it highly likely. Those with a high score may need to be treated with an alternative drug while more sensitive and specific tests for HIT are performed, while those with a low score can safely continue receiving heparin as the likelihood that they have HIT is extremely low. In an analysis of the reliability of the 4T score, a low score had a negative predictive value of 0.998, while an intermediate score had a positive predictive value of 0.14 and a high score a positive predictive value of 0.64; intermediate and high scores therefore warrant further investigation.
The first screening test in someone suspected of having HIT is aimed at detecting antibodies against heparin-PF4 complexes. This may be with a laboratory test of the ELISA (enzyme-linked immunosorbent assay) type. The ELISA test, however, detects all circulating antibodies that bind heparin-PF4 complexes, and may also falsely identify antibodies that do not cause HIT. Therefore, those with a positive ELISA are tested further with a functional assay. This test uses platelets and serum from the patient; the platelets are washed and mixed with serum and heparin. The sample is then tested for the release of serotonin, a marker of platelet activation. If this serotonin release assay (SRA) shows high serotonin release, the diagnosis of HIT is confirmed. The SRA test is difficult to perform and is usually only done in regional laboratories.
If someone has been diagnosed with HIT, some recommend routine Doppler sonography of the leg veins to identify deep vein thromboses, as this is very common in HIT.
The following revised diagnostic criteria for essential thrombocythaemia were proposed in 2005. The diagnosis requires the presence of both A criteria together with B3 to B6, or of criterion A1 together with B1 to B6. The criteria are as follows:
- A1. Platelet count > 450 × 10/µL for at least 2 months.
- A2. Acquired V617F JAK2 mutation present
- B1. No cause for a reactive thrombocytosis
- normal inflammatory indices
- B2. No evidence of iron deficiency
- stainable iron in the bone marrow or normal red cell mean corpuscular volume
- B3. No evidence of polycythemia vera
- hematocrit < midpoint of normal range or normal red cell mass in presence of normal iron stores
- B4. No evidence of chronic myeloid leukemia
- But the Philadelphia chromosome may be present in up to 10% of cases. Patients with the Philadelphia chromosome have a potential for the development of acute leukemia, especially acute lymphocytic leukemia.
- B5. No evidence of myelofibrosis
- no collagen fibrosis and ≤ grade 2 reticulin fibrosis (using 0–4 scale)
- B6. No evidence of a myelodysplastic syndrome
- no significant dysplasia
- no cytogenetic abnormalities suggestive of myelodysplasia
Typically, diagnosis involves several preliminary tests of immune function, including basic evaluation of the humoral immune system and the cell-mediated immune system. A WBC differential will reveal extremely elevated levels of neutrophils (on the order of 6-10x normal) because they are unable to leave the blood vessels.
In the case of LAD-I, specific diagnosis is done by flow cytometry. This technique will reveal absent or reduced CD18 expression in the leukocyte membrane. Recently, prenatal diagnosis systems has been established, allowing an early detection of the disease.
LAD-II diagnosis includes the study of different glycosilated forms of the transferrin protein. In LAD-III, as platelet function is also affected, this could be used to differentiate it from the other types.
Therapy involves both preventive measures and treatment of specific bleeding episodes.
- Dental hygiene lessens gingival bleeding
- Avoidance of antiplatelet agents such as aspirin and other anti-inflammatory drugs (NSAIDs) such as ibuprofen and naproxen, and anticoagulants
- Iron or folate supplementation may be necessary if excessive or prolonged bleeding has caused anemia
- Hepatitis B vaccine
- Antifibrinolytic drugs such as tranexamic acid or ε-aminocaproic acid (Amicar)
- Desmopressin (DDAVP) does not normalize the bleeding time in Glanzmann's thrombasthenia but anecdotally improves hemostasis
- Hormonal contraceptives to control excessive menstrual bleeding
- Topical agents such as gelfoam, fibrin sealants, polyethylene glycol polymers, custom dental splints
- Platelet transfusions (only if bleeding is severe; risk of platelet alloimmunization)
- Recombinant factor VIIa, AryoSeven or NovoSeven FDA approved this drug for the treatment of the disease on July 2014.
- Hematopoietic stem cell transplantation (HSCT) for severe recurrent hemorrhages
Laboratory tests might include: full blood count, liver enzymes, renal function and erythrocyte sedimentation rate.
If the cause for the high platelet count remains unclear, bone marrow biopsy is often undertaken, to differentiate whether the high platelet count is reactive or essential.