Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The younger the patient and the lower the grade at presentation the higher the chance of spontaneous resolution. Approximately 85% of grade I & II VUR cases will resolve spontaneously. Approximately 50% of grade III cases and a lower percentage of higher grades will also resolve spontaneously.
The following procedures may be used to diagnose VUR:
- Cystography
- Fluoroscopic voiding cystourethrogram (VCUG)
- Abdominal ultrasound
- Technetium-99m Dimercaptosuccunic Acid (DMSA) Scintigraphy
An abdominal ultrasound might suggest the presence of VUR if ureteral dilatation is present; however, in many circumstances of VUR of low to moderate, even high severity, the sonogram may be completely normal, thus providing insufficient utility as a single diagnostic test in the evaluation of children suspected of having VUR, such as those presenting with prenatal hydronephrosis or urinary tract infection (UTI).
VCUG is the method of choice for grading and initial workup, while RNC is preferred for subsequent evaluations as there is less exposure to radiation. A high index of suspicion should be attached to any case where a child presents with a urinary tract infection, and anatomical causes should be excluded. A VCUG and abdominal ultrasound should be performed in these cases
DMSA scintigraphy is used for the evaluation of the paranchymal damage, which is seen as cortical scars. After the first febrile UTI, the diagnostic role of an initial scintigraphy for detecting the damage before the VCUG was investigated and it was suggested that VCUG can be omitted in children who has no cortical scars and urinary tract dilatation.
Early diagnosis in children is crucial as studies have shown that the children with VUR who present with a UTI and associated acute pyelonephritis are more likely to develop permanent renal cortical scarring than those children without VUR, with an odds ratio of 2.8. Thus VUR not only increases the frequency of UTI's, but also the risk of damage to upper urinary structures and end-stage renal disease.
Diagnosis is made by patient history of passing air or a sputtering urine stream. CT scans may show air in the urinary bladder or bladder walls.
The diagnosis of bladder stone includes urinalysis, ultrasonography, x rays or cystoscopy (inserting a small thin camera into the urethra and viewing the bladder). The intravenous pyelogram can also be used to assess the presence of kidney stones. This test involves injecting a radiocontrast agent which is passed into the urinary system. X-ray images are then obtained every few minutes to determine if there is any obstruction to the contrast as it is excreted into the bladder. Today, intravenous pyelogram has been replaced at many health centers by CT scans. CT scans are more sensitive and can identify very small stones not seen by other tests.
Imaging studies, such as an intravenous urogram (IVU), renal ultrasonography, CT or MRI, are also important investigations in determining the presence and/ or cause of hydronephrosis. Whilst ultrasound allows for visualisation of the ureters and kidneys (and determine the presence of hydronephrosis and / or hydroureter), an IVU is useful for assessing the anatomical location of the obstruction. Antegrade or retrograde pyelography will show similar findings to an IVU but offer a therapeutic option as well. Real-time ultrasounds and Doppler ultrasound tests in association with vascular resistance testing helps determine how a given obstruction is effecting urinary functionality in hydronephrotic patients.
In determining the cause of hydronephrosis, it is important to rule out urinary obstruction. One way to do this is to test the kidney function. This can be done by, for instance, a diuretic intravenous pyelogram, in which the urinary system is observed radiographically after administration of a diuretic, such as 5% mannitol, and an intravenous iodine contrast. The location of obstruction can be determined with a Whittaker (or pressure perfusion) test, wherein the collecting system of the kidney is accessed percutaneously, and the liquid is introduced at high pressure and constant rate of 10ml/min while measuring the pressure within the renal pelvis. A rise in pressure above 22 cm HO suggests that the urinary collection system is obstructed. When arriving at this pressure measurement, bladder pressure is subtracted from the initial reading of internal pressure. (The test was first described by Whittaker in 1973 to test the hypothesis that patients' whose hydronephrosis persists after the posterior urethral valves have been ablated usually have ureters that are not obstructed, even though they may be dilated.)
Kay recommends that a neonate born with untreated in utero hydronephrosis receive a renal ultrasound within two days of birth. A renal pelvis greater than 12mm in a neonate is considered abnormal and suggests significant dilation and possible abnormalities such as obstruction or morphological abnormalities in the urinary tract.
The choice of imaging depends on the clinical presentation (history, symptoms and examination findings). In the case of renal colic (one sided loin pain usually accompanied by a trace of blood in the urine) the initial investigation is usually a spiral or helical CT scan. This has the advantage of showing whether there is any obstruction of flow of urine causing hydronephrosis as well as demonstrating the function of the other kidney. Many stones are not visible on plain X-ray or IVU but 99% of stones are visible on CT and therefore CT is becoming a common choice of initial investigation. CT is not used however, when there is a reason to avoid radiation exposure, e.g. in pregnancy.
For incidentally detected prenatal hydronephrosis, the first study to obtain is a postnatal renal ultrasound, since as noted, many cases of prenatal hydronephrosis resolve spontaneously. This is generally done within the first few days after birth, although there is some risk that obtaining an imaging study this early may miss some cases of mild hydronephrosis due to the relative oliguria of a newborn. Thus, some experts recommend obtaining a follow up ultrasound at 4–6 weeks to reduce the false-negative rate of the initial ultrasound. A voiding cystourethrogram (VCUG) is also typically obtained to exclude the possibility of vesicoureteral reflux or anatomical abnormalities such as posterior urethral valves. Finally, if hydronephrosis is significant and obstruction is suspected, such as a ureteropelvic junction (UPJ) or ureterovesical junction (UVJ) obstruction, a nuclear imaging study such as a MAG-3 scan is warranted.
Diagnosis is made by history and examination.
In immunocompromised patients, pus is present in the urine but often no organism can be cultured. In children, polymerase chain reaction sequencing of urine can detect fragments of the infectious agent.
The procedure differs somewhat for women and men. Laboratory testing of urine samples now can be performed with dipsticks that indicate immune system responses to infection, as well as with microscopic analysis of samples. Normal human urine is sterile. The presence of bacteria or pus in the urine usually indicates infection. The presence of hematuria, or blood in the urine, may indicate acute UTIs, kidney disease, kidney stones, inflammation of the prostate (in men), endometriosis (in women), or cancer of the urinary tract. In some cases, blood in the urine results from athletic training, particularly in runners.
Jackstone calculi are rare bladder stones that have an appearance resembling toy jacks. They are almost always composed of calcium oxalate dihydrate and consist of a dense central core and radiating . They are typically light brown with dark patches and are usually formed in the urinary bladder and rarely in the upper urinary tract. Their appearance on plain radiographs and computed tomography in human patients is usually easily recognizable. Jackstones often must be removed via cystolithotomy.
The Society of Fetal Ultrasound has developed a grading system for hydronephrosis, initially intended for use in neonatal and infant hydronephrosis, but it is now used for grading hydronephrosis in adults as well:
- Grade 0 – No renal pelvis dilation. This means an anteroposterior diameter of less than 4 mm in fetuses up to 32 weeks of gestational age and 7 mm afterwards. In adults, cutoff values for renal pelvic dilation have been defined differently by different sources, with anteroposterior diameters ranging between 10 and 20 mm. About 13% of normal healthy adults have a transverse pelvic diameter of over 10 mm.
- Grade 1 (mild) – Mild renal pelvis dilation (anteroposterior diameter less than 10 mm in fetuses) without dilation of the calyces nor parenchymal atrophy
- Grade 2 (mild) – Moderate renal pelvis dilation (between 10 and 15 mm in fetuses), including a few calyces
- Grade 3 (moderate) – Renal pelvis dilation with all calyces uniformly dilated. Normal renal parenchyma
- Grade 4 (severe) – As grade 3 but with thinning of the renal parenchyma
Biochemical blood tests determine the amount of typical markers of renal function in the blood serum, for instance serum urea and serum creatinine. Biochemistry can also be used to determine serum electrolytes. Special biochemical tests (arterial blood gas) can determine the amount of dissolved gases in the blood, indicating if pH imbalances are acute or chronic.
Urinalysis is a test that studies urine for abnormal substances such as protein or signs of infection.
- A Full Ward Test, also known as dipstick urinalysis, involves the dipping of a biochemically active test strip into the urine specimen to determine levels of tell-tale chemicals in the urine.
- Urinalysis can also involve MC&S microscopy, culture and sensitivity
Urodynamic tests evaluate the storage of urine in the bladder and the flow of urine from the bladder through the urethra. It may be performed in cases of incontinence or neurological problems affecting the urinary tract.
Ultrasound is commonly performed to investigate problems of the kidney and/or urinary tract.
Radiology:
- KUB is plain radiography of the urinary system, e.g. to identify kidney stones.
- An intravenous pyelogram studies the shape of the urinary system.
- CAT scans and MRI can also be useful in localising urinary tract pathology.
- A voiding cystogram is a functional study where contrast "dye" is injected through a catheter into the bladder. Under x-ray the radiologist asks the patient to void (usually young children) and will watch the contrast exiting the body on the x-ray monitor. This examines the child's bladder and lower urinary tract. Typically looking for vesicoureteral reflux, involving urine backflow up into the kidneys.
There is no standardized evaluation of the symptoms of UAB, in part due to the historic terminologic confusion. A thorough history aimed at detecting underlying disease or prior pelvic surgeries is certainly necessary. As a perception of volume mishandling, a voiding diary (to assess voided volumes and frequency of voiding) and a post-void residual volume would be valuable information. Uninstrumented uroflow, neurologic and pelvic examination may contribute valuable information. Imaging looking for abnormal bladder morphology or vesicoureteral reflux/hydronephrosis may be helpful. If low-pressure urine storage can be assured, and the urinary reservoir is known to be limited to the bladder, the general value of urodynamic study in UAB is unclear. In specific situations, invasive urodynamics may be helpful to distinguish bladder outlet obstruction from DU, although this distinction can be difficult.
Bladder tamponade is obstruction of the bladder outlet due to heavy blood clot formation within it. It generally requires surgery. Such heavy bleeding is usually due to bladder cancer.
The symptoms of IC/BPS are often misdiagnosed as a urinary tract infection. However, IC/BPS has not been shown to be caused by a bacterial infection and antibiotics are an ineffective treatment. IC/BPS is commonly misdiagnosed as chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) in men, and endometriosis and uterine fibroids (in women).
Urethral diverticulum is often an incidental finding. It can be diagnosed using magnetic resonance imaging and/or micturating cystourethrography. Other studies that can be used to diagnose urethral diverticulum include intravenous urography, urethroscopy, and/or ultrasound. Conditions that should be distinguished from urethral diverticulum in a differential diagnosis include overactive bladder, Gartner's duct cyst, Gartner's duct abscess, ectopic caeco-ureterocele, interstitial cystitis, pelvic inflammatory disease, endometriosis, and cancer.
A diagnosis of IC/BPS is one of exclusion, as well as a review of clinical symptoms. The AUA Guidelines recommend starting with a careful patient history, physical examination and laboratory tests to assess and document symptoms of IC, as well as other potential disorders.
The KCl test, also known as the "potassium sensitivity test", is no longer recommended. The test uses a mild potassium solution to evaluate the integrity of the bladder wall. Though the latter is not specific for IC/BPS, it has been determined to be helpful in predicting the use of compounds, such as pentosan polysulphate, which are designed to help repair the GAG layer.
For complicated cases, the use of hydrodistention with cystoscopy may be helpful. Researchers, however, determined that this visual examination of the bladder wall after stretching the bladder was not specific for IC/BPS and that the test, itself, can contribute to the development of small glomerulations (petechial hemorrhages) often found in IC/BPS. Thus, a diagnosis of IC/BPS is one of exclusion, as well as a review of clinical symptoms.
In 2006, the ESSIC society proposed more rigorous and demanding diagnostic methods with specific classification criteria so that it cannot be confused with other, similar conditions. Specifically, they require that a patient must have pain associated with the bladder, accompanied by one other urinary symptom. Thus, a patient with just frequency or urgency would be excluded from a diagnosis. Secondly, they strongly encourage the exclusion of confusable diseases through an extensive and expensive series of tests including (A) a medical history and physical exam, (B) a dipstick urinalysis, various urine cultures, and a serum PSA in men over 40, (C) flowmetry and post-void residual urine volume by ultrasound scanning and (D) cystoscopy. A diagnosis of IC/BPS would be confirmed with a hydrodistention during cystoscopy with biopsy.
They also propose a ranking system based upon the physical findings in the bladder. Patients would receive a numeric and letter based score based upon the severity of their disease as found during the hydrodistention. A score of 1–3 would relate to the severity of the disease and a rating of A–C represents biopsy findings. Thus, a patient with 1A would have very mild symptoms and disease while a patient with 3C would have the worst possible symptoms. Widely recognized scoring systems such as the O'Leary Sant symptom and problem score have emerged to evaluate the severity of IC symptoms such as pain and urinary symptoms.
The Gold standard for all Urinary incontinence is an urodynamic study that looks for bladder capacity, detrusor stability, contractility and voiding ability (Cystometry)
Urinary bladder disease includes urinary bladder inflammation such as cystitis, bladder rupture and bladder obstruction (tamponade).
Unfortunately mesna is ineffective as a treatment once hemorrhagic cystitis has developed. Although rare, once a case of radiation-induced hemorrhagic cystitis is diagnosed there is no empirically-proven treatments to heal this type of condition, which can severely degrade a patient's quality of life and might possibly lead to renal failure with risk of death.
Viral hemorrhagic cystitis in children generally spontaneously resolves within a few days.
The first step in the treatment of HC should be directed toward clot evacuation. Bladder outlet obstruction from clots can lead to urosepsis, bladder rupture, and renal failure. Clot evacuation can be performed by placing a wide-lumen bladder catheter at bedside. The bladder can be irrigated with water or sodium chloride solution. The use of water is preferable because water can help with clot lysis. Care must be taken to not overdistend the bladder and cause a perforation.. Hyperbaric oxygen (HBO2) therapy has been proven to be effective in treating radiation-induced hemorrhagic cystitis.
Many people with OAB symptoms had those symptoms subside within a year, with estimates as high as 39%, but most have symptoms for several years.
A meta-analysis on the influence of voiding position on urodynamics in healthy males and males with LUTS showed that in the sitting position, the residual urine in the bladder was significantly reduced. The other parameters, namely the maximum urinary flow and the voiding time were increased and decreased respectively. For healthy males, no influence was found on these parameters, meaning that they can urinate in either position.
In people with microscopic hematuria, it is important to rule out any possible confounders such as menstruation in women, possible presence of semen in sample or recent rigorous exercise. In menstruating women, tests should be repeated during non-bleeding parts of their cycles. In individuals with history of recent rigorous exercise, urinalysis should be repeated 4–6 weeks following cessation of exercise. All women of child-bearing age should undergo a pregnancy test, and if positive should receive an ultrasound of their kidneys and bladder with further invasive diagnostic work-up deferred until completion of pregnancy.
If diagnostic work-up has been unyielding so far or the aforementioned risk factors are present, it is important to begin a thorough work-up for possible malignancy especially of the bladder and kidney by referring to a Urologist to look at the urethra and bladder with a cystoscopy and also performing additional imaging using CT urography, which provides a thorough view of the complete urinary system.
For individuals with persistent hematuria with no immediate identifiable cause, urinalysis should be repeated once a year, and if it is negative for 2 years then you can stop repeating the tests. However, if it is positive for 3 years, repeat anatomic evaluation should be done.
Diagnosis of OAB is made primarily on the person's signs and symptoms and by ruling out other possible causes such as an infection. Urodynamics, a bladder scope, and ultrasound are generally not needed. Additionally, urine culture may be done to rule out infection. The frequency/volume chart may be maintained and cystourethroscopy may be done to exclude tumor and kidney stones. If there is an underlying metabolic or pathologic condition that explains the symptoms, the symptoms may be considered part of that disease and not OAB.
OAB causes similar symptoms to some other conditions such as urinary tract infection (UTI), bladder cancer, and benign prostatic hyperplasia (BPH). Urinary tract infections often involve pain and hematuria (blood in the urine) which are typically absent in OAB. Bladder cancer usually includes hematuria and can include pain, both not associated with OAB, and the common symptoms of OAB (urgency, frequency, and nocturia) may be absent. BPH frequently includes symptoms at the time of voiding as well as sometimes including pain or hematuria, and all of these are not usually present in OAB. Diabetes insipidus, which causes high frequency and volume, though not necessarily urgency.
Bethanechol (Management of overflow incontinence by activating muscarinic receptors in the bladder and stimulating contraction to void the urine, NOT a treatment modality; must rule out urinary obstruction prior to use.)
If an incontinence is due to overflow incontinence, in which the bladder never empties completely, or if the bladder cannot empty because of poor muscle tone, past surgery, or spinal cord injury, a catheter may be used to empty the bladder. A catheter is a tube that can be inserted through the urethra into the bladder to drain urine. Catheters may be used once in a while or on a constant basis, in which case the tube connects to a bag that is attached to the leg. If a long-term (or indwelling) catheter is used, urinary tract infections may occur.
Patients with incontinence should be referred to a medical practitioner specializing in this field. Urologists specialize in the urinary tract, and some urologists further specialize in the female urinary tract. A urogynecologist is a gynecologist who has special training in urological problems in women. Family physicians and internists see patients for all kinds of complaints, and are well trained to diagnose and treat this common problem. These primary care specialists can refer patients to urology specialists if needed.
A careful history taking is essential especially in the pattern of voiding and urine leakage as it suggests the type of incontinence faced. Other important points include straining and discomfort, use of drugs, recent surgery, and illness.
The physical examination will focus on looking for signs of medical conditions causing incontinence, such as tumors that block the urinary tract, stool impaction, and poor reflexes or sensations, which may be evidence of a nerve-related cause.
A test often performed is the measurement of bladder capacity and residual urine for evidence of poorly functioning bladder muscles.
Other tests include:
- Stress test – the patient relaxes, then coughs vigorously as the doctor watches for loss of urine.
- Urinalysis – urine is tested for evidence of infection, urinary stones, or other contributing causes.
- Blood tests – blood is taken, sent to a laboratory, and examined for substances related to causes of incontinence.
- Ultrasound – sound waves are used to visualize the kidneys, ureters, bladder, and urethra.
- Cystoscopy – a thin tube with a tiny camera is inserted in the urethra and used to see the inside of the urethra and bladder.
- Urodynamics – various techniques measure pressure in the bladder and the flow of urine.
Patients are often asked to keep a diary for a day or more, up to a week, to record the pattern of voiding, noting times and the amounts of urine produced.
Research projects that assess the efficacy of anti-incontinence therapies often quantify the extent of urinary incontinence. The methods include the 1-h pad test, measuring leakage volume; using a voiding diary, counting the number of incontinence episodes (leakage episodes) per day; and assessing of the strength of pelvic floor muscles, measuring the maximum vaginal squeeze pressure.
To make the diagnosis of a urinary tract infection in children, a positive urinary culture is required. Contamination poses a frequent challenge depending on the method of collection used, thus a cutoff of 10 CFU/mL is used for a "clean-catch" mid stream sample, 10 CFU/mL is used for catheter-obtained specimens, and 10 CFU/mL is used for suprapubic aspirations (a sample drawn directly from the bladder with a needle). The use of "urine bags" to collect samples is discouraged by the World Health Organization due to the high rate of contamination when cultured, and catheterization is preferred in those not toilet trained. Some, such as the American Academy of Pediatrics recommends renal ultrasound and voiding cystourethrogram (watching a person's urethra and urinary bladder with real time x-rays while they urinate) in all children less than two years old who have had a urinary tract infection. However, because there is a lack of effective treatment if problems are found, others such as the National Institute for Health and Care Excellence only recommends routine imaging in those less than six months old or who have unusual findings.
The primary treatment for urethral diverticulum is surgical. The surgery is conducted transvaginally, usually when there is no acute inflammation to better aid dissection of the delicate tissues.