Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The diagnosis of bladder stone includes urinalysis, ultrasonography, x rays or cystoscopy (inserting a small thin camera into the urethra and viewing the bladder). The intravenous pyelogram can also be used to assess the presence of kidney stones. This test involves injecting a radiocontrast agent which is passed into the urinary system. X-ray images are then obtained every few minutes to determine if there is any obstruction to the contrast as it is excreted into the bladder. Today, intravenous pyelogram has been replaced at many health centers by CT scans. CT scans are more sensitive and can identify very small stones not seen by other tests.
Jackstone calculi are rare bladder stones that have an appearance resembling toy jacks. They are almost always composed of calcium oxalate dihydrate and consist of a dense central core and radiating . They are typically light brown with dark patches and are usually formed in the urinary bladder and rarely in the upper urinary tract. Their appearance on plain radiographs and computed tomography in human patients is usually easily recognizable. Jackstones often must be removed via cystolithotomy.
Diagnostic workup varies by the stone type, but in general:
- Clinical history and physical examination
- Imaging studies
- Some stone types (mainly those with substantial calcium content) can be detected on X-ray and CT scan
- Many stone types can be detected by ultrasound
- Factors contributing to stone formation (as in #Etiology) are often tested:
- Laboratory testing can give levels of relevant substances in blood or urine
- Some stones can be directly recovered (at surgery, or when they leave the body spontaneously) and sent to a laboratory for analysis of content
Imaging studies, such as an intravenous urogram (IVU), renal ultrasonography, CT or MRI, are also important investigations in determining the presence and/ or cause of hydronephrosis. Whilst ultrasound allows for visualisation of the ureters and kidneys (and determine the presence of hydronephrosis and / or hydroureter), an IVU is useful for assessing the anatomical location of the obstruction. Antegrade or retrograde pyelography will show similar findings to an IVU but offer a therapeutic option as well. Real-time ultrasounds and Doppler ultrasound tests in association with vascular resistance testing helps determine how a given obstruction is effecting urinary functionality in hydronephrotic patients.
In determining the cause of hydronephrosis, it is important to rule out urinary obstruction. One way to do this is to test the kidney function. This can be done by, for instance, a diuretic intravenous pyelogram, in which the urinary system is observed radiographically after administration of a diuretic, such as 5% mannitol, and an intravenous iodine contrast. The location of obstruction can be determined with a Whittaker (or pressure perfusion) test, wherein the collecting system of the kidney is accessed percutaneously, and the liquid is introduced at high pressure and constant rate of 10ml/min while measuring the pressure within the renal pelvis. A rise in pressure above 22 cm HO suggests that the urinary collection system is obstructed. When arriving at this pressure measurement, bladder pressure is subtracted from the initial reading of internal pressure. (The test was first described by Whittaker in 1973 to test the hypothesis that patients' whose hydronephrosis persists after the posterior urethral valves have been ablated usually have ureters that are not obstructed, even though they may be dilated.)
Kay recommends that a neonate born with untreated in utero hydronephrosis receive a renal ultrasound within two days of birth. A renal pelvis greater than 12mm in a neonate is considered abnormal and suggests significant dilation and possible abnormalities such as obstruction or morphological abnormalities in the urinary tract.
The choice of imaging depends on the clinical presentation (history, symptoms and examination findings). In the case of renal colic (one sided loin pain usually accompanied by a trace of blood in the urine) the initial investigation is usually a spiral or helical CT scan. This has the advantage of showing whether there is any obstruction of flow of urine causing hydronephrosis as well as demonstrating the function of the other kidney. Many stones are not visible on plain X-ray or IVU but 99% of stones are visible on CT and therefore CT is becoming a common choice of initial investigation. CT is not used however, when there is a reason to avoid radiation exposure, e.g. in pregnancy.
For incidentally detected prenatal hydronephrosis, the first study to obtain is a postnatal renal ultrasound, since as noted, many cases of prenatal hydronephrosis resolve spontaneously. This is generally done within the first few days after birth, although there is some risk that obtaining an imaging study this early may miss some cases of mild hydronephrosis due to the relative oliguria of a newborn. Thus, some experts recommend obtaining a follow up ultrasound at 4–6 weeks to reduce the false-negative rate of the initial ultrasound. A voiding cystourethrogram (VCUG) is also typically obtained to exclude the possibility of vesicoureteral reflux or anatomical abnormalities such as posterior urethral valves. Finally, if hydronephrosis is significant and obstruction is suspected, such as a ureteropelvic junction (UPJ) or ureterovesical junction (UVJ) obstruction, a nuclear imaging study such as a MAG-3 scan is warranted.
Laboratory investigations typically carried out include:
- microscopic examination of the urine, which may show red blood cells, bacteria, leukocytes, urinary casts and crystals;
- urine culture to identify any infecting organisms present in the urinary tract and sensitivity to determine the susceptibility of these organisms to specific antibiotics;
- complete blood count, looking for neutrophilia (increased neutrophil granulocyte count) suggestive of bacterial infection, as seen in the setting of struvite stones;
- renal function tests to look for abnormally high blood calcium blood levels (hypercalcemia);
- 24 hour urine collection to measure total daily urinary volume, magnesium, sodium, uric acid, calcium, citrate, oxalate and phosphate;
- collection of stones (by urinating through a StoneScreen kidney stone collection cup or a simple tea strainer) is useful. Chemical analysis of collected stones can establish their composition, which in turn can help to guide future preventive and therapeutic management.
In people with a history of stones, those who are less than 50 years of age and are presenting with the symptoms of stones without any concerning signs do not require helical CT scan imaging. A CT scan is also not typically recommended in children.
Otherwise a noncontrast helical CT scan with sections is the diagnostic modality of choice in the radiographic evaluation of suspected nephrolithiasis. All stones are detectable on CT scans except very rare stones composed of certain drug residues in the urine, such as from indinavir. Calcium-containing stones are relatively radiodense, and they can often be detected by a traditional radiograph of the abdomen that includes the kidneys, ureters, and bladder (KUB film). Some 60% of all renal stones are radiopaque. In general, calcium phosphate stones have the greatest density, followed by calcium oxalate and magnesium ammonium phosphate stones. Cystine calculi are only faintly radiodense, while uric acid stones are usually entirely radiolucent.
Where a CT scan is unavailable, an intravenous pyelogram may be performed to help confirm the diagnosis of urolithiasis. This involves intravenous injection of a contrast agent followed by a KUB film. Uroliths present in the kidneys, ureters or bladder may be better defined by the use of this contrast agent. Stones can also be detected by a retrograde pyelogram, where a similar contrast agent is injected directly into the distal ostium of the ureter (where the ureter terminates as it enters the bladder).
Renal ultrasonography can sometimes be useful, as it gives details about the presence of hydronephrosis, suggesting the stone is blocking the outflow of urine. Radiolucent stones, which do not appear on KUB, may show up on ultrasound imaging studies. Other advantages of renal ultrasonography include its low cost and absence of radiation exposure. Ultrasound imaging is useful for detecting stones in situations where X-rays or CT scans are discouraged, such as in children or pregnant women. Despite these advantages, renal ultrasonography in 2009 was not considered a substitute for noncontrast helical CT scan in the initial diagnostic evaluation of urolithiasis. The main reason for this is that compared with CT, renal ultrasonography more often fails to detect small stones (especially ureteral stones), as well as other serious disorders that could be causing the symptoms. A 2014 study confirmed that ultrasonography rather than CT as an initial diagnostic test results in less radiation exposure and did not find any significant complications.
The Society of Fetal Ultrasound has developed a grading system for hydronephrosis, initially intended for use in neonatal and infant hydronephrosis, but it is now used for grading hydronephrosis in adults as well:
- Grade 0 – No renal pelvis dilation. This means an anteroposterior diameter of less than 4 mm in fetuses up to 32 weeks of gestational age and 7 mm afterwards. In adults, cutoff values for renal pelvic dilation have been defined differently by different sources, with anteroposterior diameters ranging between 10 and 20 mm. About 13% of normal healthy adults have a transverse pelvic diameter of over 10 mm.
- Grade 1 (mild) – Mild renal pelvis dilation (anteroposterior diameter less than 10 mm in fetuses) without dilation of the calyces nor parenchymal atrophy
- Grade 2 (mild) – Moderate renal pelvis dilation (between 10 and 15 mm in fetuses), including a few calyces
- Grade 3 (moderate) – Renal pelvis dilation with all calyces uniformly dilated. Normal renal parenchyma
- Grade 4 (severe) – As grade 3 but with thinning of the renal parenchyma
Biochemical blood tests determine the amount of typical markers of renal function in the blood serum, for instance serum urea and serum creatinine. Biochemistry can also be used to determine serum electrolytes. Special biochemical tests (arterial blood gas) can determine the amount of dissolved gases in the blood, indicating if pH imbalances are acute or chronic.
Urinalysis is a test that studies urine for abnormal substances such as protein or signs of infection.
- A Full Ward Test, also known as dipstick urinalysis, involves the dipping of a biochemically active test strip into the urine specimen to determine levels of tell-tale chemicals in the urine.
- Urinalysis can also involve MC&S microscopy, culture and sensitivity
Urodynamic tests evaluate the storage of urine in the bladder and the flow of urine from the bladder through the urethra. It may be performed in cases of incontinence or neurological problems affecting the urinary tract.
Ultrasound is commonly performed to investigate problems of the kidney and/or urinary tract.
Radiology:
- KUB is plain radiography of the urinary system, e.g. to identify kidney stones.
- An intravenous pyelogram studies the shape of the urinary system.
- CAT scans and MRI can also be useful in localising urinary tract pathology.
- A voiding cystogram is a functional study where contrast "dye" is injected through a catheter into the bladder. Under x-ray the radiologist asks the patient to void (usually young children) and will watch the contrast exiting the body on the x-ray monitor. This examines the child's bladder and lower urinary tract. Typically looking for vesicoureteral reflux, involving urine backflow up into the kidneys.
The American Urological Association recommends ongoing monitoring of children with VUR until the abnormality resolves or is no longer clinically significant. The recommendations are for annual evaluation of blood pressure, height, weight, analysis of the urine, and kidney ultrasound.
The younger the patient and the lower the grade at presentation the higher the chance of spontaneous resolution. Approximately 85% of grade I & II VUR cases will resolve spontaneously. Approximately 50% of grade III cases and a lower percentage of higher grades will also resolve spontaneously.
Modification of predisposing factors can sometimes slow or reverse stone formation. Treatment varies by stone type, but, in general:
- Medication
- Surgery (lithotomy)
- Antibiotics and/or surgery for infections
- Medication
- Extracorporeal shock wave lithotripsy (ESWL) for removal of calculi
Diagnosis is made by history and examination.
In immunocompromised patients, pus is present in the urine but often no organism can be cultured. In children, polymerase chain reaction sequencing of urine can detect fragments of the infectious agent.
The procedure differs somewhat for women and men. Laboratory testing of urine samples now can be performed with dipsticks that indicate immune system responses to infection, as well as with microscopic analysis of samples. Normal human urine is sterile. The presence of bacteria or pus in the urine usually indicates infection. The presence of hematuria, or blood in the urine, may indicate acute UTIs, kidney disease, kidney stones, inflammation of the prostate (in men), endometriosis (in women), or cancer of the urinary tract. In some cases, blood in the urine results from athletic training, particularly in runners.
Diagnosis is made by patient history of passing air or a sputtering urine stream. CT scans may show air in the urinary bladder or bladder walls.
In people with microscopic hematuria, it is important to rule out any possible confounders such as menstruation in women, possible presence of semen in sample or recent rigorous exercise. In menstruating women, tests should be repeated during non-bleeding parts of their cycles. In individuals with history of recent rigorous exercise, urinalysis should be repeated 4–6 weeks following cessation of exercise. All women of child-bearing age should undergo a pregnancy test, and if positive should receive an ultrasound of their kidneys and bladder with further invasive diagnostic work-up deferred until completion of pregnancy.
If diagnostic work-up has been unyielding so far or the aforementioned risk factors are present, it is important to begin a thorough work-up for possible malignancy especially of the bladder and kidney by referring to a Urologist to look at the urethra and bladder with a cystoscopy and also performing additional imaging using CT urography, which provides a thorough view of the complete urinary system.
For individuals with persistent hematuria with no immediate identifiable cause, urinalysis should be repeated once a year, and if it is negative for 2 years then you can stop repeating the tests. However, if it is positive for 3 years, repeat anatomic evaluation should be done.
Urethral diverticulum is often an incidental finding. It can be diagnosed using magnetic resonance imaging and/or micturating cystourethrography. Other studies that can be used to diagnose urethral diverticulum include intravenous urography, urethroscopy, and/or ultrasound. Conditions that should be distinguished from urethral diverticulum in a differential diagnosis include overactive bladder, Gartner's duct cyst, Gartner's duct abscess, ectopic caeco-ureterocele, interstitial cystitis, pelvic inflammatory disease, endometriosis, and cancer.
For people with visible hematuria and evidence of blood clots, further imaging with an abdominal CT scan should be done and an urgent referral to a urologist made. Otherwise, the next step involves determining if source of bleeding is glomerular in nature as evidenced by presence of inappropriately shaped/dysmorphic red blood cells, presence of protein in the urine, new or worsening hypertension or swelling. If source is glomerular patients should be referred to a nephrologist for further evaluation. Non-glomerular source of bleeding will usually require further work-up by a urologist.
To make the diagnosis of a urinary tract infection in children, a positive urinary culture is required. Contamination poses a frequent challenge depending on the method of collection used, thus a cutoff of 10 CFU/mL is used for a "clean-catch" mid stream sample, 10 CFU/mL is used for catheter-obtained specimens, and 10 CFU/mL is used for suprapubic aspirations (a sample drawn directly from the bladder with a needle). The use of "urine bags" to collect samples is discouraged by the World Health Organization due to the high rate of contamination when cultured, and catheterization is preferred in those not toilet trained. Some, such as the American Academy of Pediatrics recommends renal ultrasound and voiding cystourethrogram (watching a person's urethra and urinary bladder with real time x-rays while they urinate) in all children less than two years old who have had a urinary tract infection. However, because there is a lack of effective treatment if problems are found, others such as the National Institute for Health and Care Excellence only recommends routine imaging in those less than six months old or who have unusual findings.
The symptoms of IC/BPS are often misdiagnosed as a urinary tract infection. However, IC/BPS has not been shown to be caused by a bacterial infection and antibiotics are an ineffective treatment. IC/BPS is commonly misdiagnosed as chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) in men, and endometriosis and uterine fibroids (in women).
A diagnosis of IC/BPS is one of exclusion, as well as a review of clinical symptoms. The AUA Guidelines recommend starting with a careful patient history, physical examination and laboratory tests to assess and document symptoms of IC, as well as other potential disorders.
The KCl test, also known as the "potassium sensitivity test", is no longer recommended. The test uses a mild potassium solution to evaluate the integrity of the bladder wall. Though the latter is not specific for IC/BPS, it has been determined to be helpful in predicting the use of compounds, such as pentosan polysulphate, which are designed to help repair the GAG layer.
For complicated cases, the use of hydrodistention with cystoscopy may be helpful. Researchers, however, determined that this visual examination of the bladder wall after stretching the bladder was not specific for IC/BPS and that the test, itself, can contribute to the development of small glomerulations (petechial hemorrhages) often found in IC/BPS. Thus, a diagnosis of IC/BPS is one of exclusion, as well as a review of clinical symptoms.
In 2006, the ESSIC society proposed more rigorous and demanding diagnostic methods with specific classification criteria so that it cannot be confused with other, similar conditions. Specifically, they require that a patient must have pain associated with the bladder, accompanied by one other urinary symptom. Thus, a patient with just frequency or urgency would be excluded from a diagnosis. Secondly, they strongly encourage the exclusion of confusable diseases through an extensive and expensive series of tests including (A) a medical history and physical exam, (B) a dipstick urinalysis, various urine cultures, and a serum PSA in men over 40, (C) flowmetry and post-void residual urine volume by ultrasound scanning and (D) cystoscopy. A diagnosis of IC/BPS would be confirmed with a hydrodistention during cystoscopy with biopsy.
They also propose a ranking system based upon the physical findings in the bladder. Patients would receive a numeric and letter based score based upon the severity of their disease as found during the hydrodistention. A score of 1–3 would relate to the severity of the disease and a rating of A–C represents biopsy findings. Thus, a patient with 1A would have very mild symptoms and disease while a patient with 3C would have the worst possible symptoms. Widely recognized scoring systems such as the O'Leary Sant symptom and problem score have emerged to evaluate the severity of IC symptoms such as pain and urinary symptoms.
In straightforward cases, a diagnosis may be made and treatment given based on symptoms alone without further laboratory confirmation. In complicated or questionable cases, it may be useful to confirm the diagnosis via urinalysis, looking for the presence of urinary nitrites, white blood cells (leukocytes), or leukocyte esterase. Another test, urine microscopy, looks for the presence of red blood cells, white blood cells, or bacteria. Urine culture is deemed positive if it shows a bacterial colony count of greater than or equal to 10 colony-forming units per mL of a typical urinary tract organism. Antibiotic sensitivity can also be tested with these cultures, making them useful in the selection of antibiotic treatment. However, women with negative cultures may still improve with antibiotic treatment. As symptoms can be vague and without reliable tests for urinary tract infections, diagnosis can be difficult in the elderly.
Bladder tamponade is obstruction of the bladder outlet due to heavy blood clot formation within it. It generally requires surgery. Such heavy bleeding is usually due to bladder cancer.
Unfortunately mesna is ineffective as a treatment once hemorrhagic cystitis has developed. Although rare, once a case of radiation-induced hemorrhagic cystitis is diagnosed there is no empirically-proven treatments to heal this type of condition, which can severely degrade a patient's quality of life and might possibly lead to renal failure with risk of death.
Viral hemorrhagic cystitis in children generally spontaneously resolves within a few days.
The first step in the treatment of HC should be directed toward clot evacuation. Bladder outlet obstruction from clots can lead to urosepsis, bladder rupture, and renal failure. Clot evacuation can be performed by placing a wide-lumen bladder catheter at bedside. The bladder can be irrigated with water or sodium chloride solution. The use of water is preferable because water can help with clot lysis. Care must be taken to not overdistend the bladder and cause a perforation.. Hyperbaric oxygen (HBO2) therapy has been proven to be effective in treating radiation-induced hemorrhagic cystitis.
If left untreated, complications may arise including abscess formation, peritonitis, sepsis, and damage to the urinary tract by fibrosis and granuloma formation. It is recommended, as a first step, to drain the lesion with ultrasound or CT guidance. If a patient has an underlying obstructive problem it needs to be addressed according to its cause.
Due to the atypical presentation and rarity of the infection, it takes a physician longer to diagnose than more common types of bladder infections. Diagnosis requires a personalized investigation with consideration to risk factors and symptoms (Bobba). Radiology of the abdominal or pubic region has proven to be an important tool in reaching a definitive diagnosis of conditions causing gas in the urinary tract. Computer tomography, or CT scans, are of most help due to their high sensitivity in detecting gas and air bubbles (Gheonea, Bondari). However, radiology is normally not the first tool used to diagnose. Most diagnoses are made by chance after imaging examination (Weerakkody). Sometimes, even when patients don’t show symptoms, their Emphysematous cystitis infection level can be very advanced already (De Baets, Baert). Gas in the bladder wall will often have the appearance of cobblestone or a “beaded necklace” with the use of conventional radiography (Weerakkody). Delayed diagnosis can lead to a severe infection, extension of the uterus, rupturing of the bladder, and death. Emphysematous cystitis has an overall mortality rate of 7%. However, surgery is only considered in severe cases where the disease progresses involving the ureters, kidneys, or adrenal glands. When required, surgery may be extensive. (De Baets, Baert).
The primary treatment for urethral diverticulum is surgical. The surgery is conducted transvaginally, usually when there is no acute inflammation to better aid dissection of the delicate tissues.