Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Diagnosis is made by any blood, bone marrow or stool cultures and with the Widal test (demonstration of antibodies against "Salmonella" antigens O-somatic and H-flagellar). In epidemics and less wealthy countries, after excluding malaria, dysentery, or pneumonia, a therapeutic trial time with chloramphenicol is generally undertaken while awaiting the results of the Widal test and cultures of the blood and stool.
The Widal test is time-consuming, and prone to significant false positive results. The test may be also falsely negative in the early course of illness. However, unlike Typhidot test Widal test quantifies the specimen with titres.
Typhidot is a medical test consisting of a dot ELISA kit that detects IgM and IgG antibodies against the outer membrane protein (OMP) of the Salmonella typhi. The typhidot test becomes positive within 2–3 days of infection and separately identifies IgM and IgG antibodies. The test is based on the presence of specific IgM and IgG antibodies to a specific 50Kd OMP antigen, which is impregnated on nitrocellulose strips. IgM shows recent infection whereas IgG signifies remote infection. The most important limitation of this test is that it is not quantitative and result is only positive or negative.
The term 'enteric fever' is a collective term that refers to severe typhoid and paratyphoid.
Yellow fever is most frequently a clinical diagnosis, made on the basis of symptoms and the diseased person's whereabouts prior to becoming ill. Mild courses of the disease can only be confirmed virologically. Since mild courses of yellow fever can also contribute significantly to regional outbreaks, every suspected case of yellow fever (involving symptoms of fever, pain, nausea and vomiting six to 10 days after leaving the affected area) is treated seriously.
If yellow fever is suspected, the virus cannot be confirmed until six to 10 days after the illness. A direct confirmation can be obtained by reverse transcription polymerase chain reaction where the genome of the virus is amplified. Another direct approach is the isolation of the virus and its growth in cell culture using blood plasma; this can take one to four weeks.
Serologically, an enzyme linked immunosorbent assay during the acute phase of the disease using specific IgM against yellow fever or an increase in specific IgG-titer (compared to an earlier sample) can confirm yellow fever. Together with clinical symptoms, the detection of IgM or a fourfold increase in IgG-titer is considered sufficient indication for yellow fever. Since these tests can cross-react with other flaviviruses, like dengue virus, these indirect methods cannot conclusively prove yellow fever infection.
Liver biopsy can verify inflammation and necrosis of hepatocytes and detect viral antigens. Because of the bleeding tendency of yellow fever patients, a biopsy is only advisable "post mortem" to confirm the cause of death.
In a differential diagnosis, infections with yellow fever must be distinguished from other feverish illnesses like malaria. Other viral hemorrhagic fevers, such as Ebola virus, Lassa virus, Marburg virus, and Junin virus, must be excluded as cause.
Providing basic sanitation and safe drinking water and food is the key for controlling the disease. In developed countries, enteric fever rates decreased in the past when treatment of municipal water was introduced, human feces were excluded from food production, and pasteurization of dairy products began. In addition, children and adults should be carefully educated about personal hygiene. This would include careful handwashing after defecation and sexual contact, before preparing or eating food, and especially the sanitary disposal of feces. Food handlers should be educated in personal hygiene prior to handling food or utensils and equipment. Infected individuals should be advised to avoid food preparation. Sexually active people should be educated about the risks of sexual practices that permit fecal-oral contact.
Those who travel to countries with poor sanitation should receive a live attenuated typhoid vaccine—Ty21a (Vivotif), which, in addition to the protection against typhoid fever, and may provide some protection against paratyphoid fever caused by the "S. enterica" serotypes A and B. In particular, a reanalysis of data from a trial conducted in Chile showed the Ty21a vaccine was 49% effective (95% CI: 8–73%) in preventing paratyphoid fever caused by the serotype B. Evidence from a study of international travelers in Israel also indicates the vaccine may prevent a fraction of infections by the serotype A, although no trial confirms this. This cross-protection by a typhoid vaccine is most likely due to O antigens shared between different "S. enterica" serotypes.
Exclusion from work and social activities should be considered for symptomatic, and asymptomatic, people who are food handlers, healthcare/daycare staff who are involved in patient care and/or child care, children attending unsanitary daycare centers, and older children who are unable to implement good standards of personal hygiene. The exclusion applies until two consecutive stool specimens are taken from the infected patient and are reported negative.
The American Public Health Association recommends treatment based upon clinical findings and before culturing confirms the diagnosis. Without treatment, death may occur in 10 to 60 percent of patients with epidemic typhus, with patients over age 60 having the highest risk of death. In the antibiotic era, death is uncommon if doxycycline is given. In one study of 60 hospitalized patients with epidemic typhus, no patient died when given doxycycline or chloramphenicol. Some patients also may need oxygen and intravenous (IV) fluids.
Two typhoid vaccines are licensed for use for the prevention of typhoid: the live, oral Ty21a vaccine (sold as Vivotif by Crucell Switzerland AG) and the injectable typhoid polysaccharide vaccine (sold as Typhim Vi by Sanofi Pasteur and 'Typherix by GlaxoSmithKline). Both are efficacious and recommended for travellers to areas where typhoid is endemic. Boosters are recommended every five years for the oral vaccine and every two years for the injectable form. An older, killed-whole-cell vaccine is still used in countries where the newer preparations are not available, but this vaccine is no longer recommended for use because it has a higher rate of side effects (mainly pain and inflammation at the site of the injection).
To help decrease rates of typhoid fever in developing nations, the World Health Organization (WHO) endorsed the use of a vaccination program starting in 1999. Vaccinations have proven to be a great way at controlling outbreaks in high incidence areas. Just as important, it is also very cost-effective. Vaccination prices are normally low, less than US $1 per dose. Because the price is low, poverty-stricken communities are more willing to take advantage of the vaccinations. Although vaccination programs for typhoid have proven to be effective, they alone cannot eliminate typhoid fever. Combining the use of vaccines along with increasing public health efforts is the only proven way to control this disease.
Since the 1990s there have been two typhoid fever vaccines recommended by the World Health Organization. The ViPS vaccine is given via injection, while the Ty21a is taken through capsules. It is recommended only people 2 years or older be vaccinated with the ViPS vaccine and requires a revaccination after 2–3 years with a 55–72% vaccine efficacy. The alternative Ty21a vaccine is recommended for people 5 years or older, and has a 5-7-year duration with a 51–67% vaccine efficacy. The two different vaccines have been proven as a safe and effective treatment for epidemic disease control in multiple regions.
A version combined with hepatitis A is also available.
Vaccination is recommended for those traveling to affected areas, because non-native people tend to develop more severe illness when infected. Protection begins by the 10th day after vaccine administration in 95% of people, and had been reported to last for at least 10 years. WHO now states that a single dose of vaccination is sufficient to confer lifelong immunity against yellow fever disease." The attenuated live vaccine stem 17D was developed in 1937 by Max Theiler. The World Health Organization (WHO) recommends routine vaccinations for people living in affected areas between the 9th and 12th month after birth.
Up to one in four people experience fever, aches, and local soreness and redness at the site of injection. In rare cases (less than one in 200,000 to 300,000), the vaccination can cause yellow fever vaccine–associated viscerotropic disease, which is fatal in 60% of cases. It is probably due to the genetic morphology of the immune system. Another possible side effect is an infection of the nervous system, which occurs in one in 200,000 to 300,000 cases, causing yellow fever vaccine-associated neurotropic disease, which can lead to meningoencephalitis and is fatal in less than 5% of cases.
The Yellow Fever Initiative, launched by WHO in 2006, vaccinated more than 105 million people in 14 countries in West Africa. No outbreaks were reported during 2015. The campaign was supported by the GAVI Alliance, and governmental organizations in Europe and Africa. According to the WHO, mass vaccination cannot eliminate yellow fever because of the vast number of infected mosquitoes in urban areas of the target countries, but it will significantly reduce the number of people infected.
In March 2017, WHO launched a vaccination campaign in Brazil with 3.5 million doses from an emergency stockpile. In March 2017 the WHO recommended vaccination for travellers to certain parts of Brazil.
The diagnosis of dengue fever may be confirmed by microbiological laboratory testing. This can be done by virus isolation in cell cultures, nucleic acid detection by PCR, viral antigen detection (such as for NS1) or specific antibodies (serology). Virus isolation and nucleic acid detection are more accurate than antigen detection, but these tests are not widely available due to their greater cost. Detection of NS1 during the febrile phase of a primary infection may be greater than 90% sensitive however is only 60–80% in subsequent infections. All tests may be negative in the early stages of the disease. PCR and viral antigen detection are more accurate in the first seven days. In 2012 a PCR test was introduced that can run on equipment used to diagnose influenza; this is likely to improve access to PCR-based diagnosis.
These laboratory tests are only of diagnostic value during the acute phase of the illness with the exception of serology. Tests for dengue virus-specific antibodies, types IgG and IgM, can be useful in confirming a diagnosis in the later stages of the infection. Both IgG and IgM are produced after 5–7 days. The highest levels (titres) of IgM are detected following a primary infection, but IgM is also produced in reinfection. IgM becomes undetectable 30–90 days after a primary infection, but earlier following re-infections. IgG, by contrast, remains detectable for over 60 years and, in the absence of symptoms, is a useful indicator of past infection. After a primary infection, IgG reaches peak levels in the blood after 14–21 days. In subsequent re-infections, levels peak earlier and the titres are usually higher. Both IgG and IgM provide protective immunity to the infecting serotype of the virus. In testing for IgG and IgM antibodies there may be cross-reactivity with other flaviviruses which may result in a false positive after recent infections or vaccinations with yellow fever virus or Japanese encephalitis. The detection of IgG alone is not considered diagnostic unless blood samples are collected 14 days apart and a greater than fourfold increase in levels of specific IgG is detected. In a person with symptoms, the detection of IgM is considered diagnostic.
As of 2017 there is no commercially available vaccine. A vaccine has been in development for scrub typhus known as the scrub typhus vaccine.
The World Health Organization's 2009 classification divides dengue fever into two groups: uncomplicated and severe. This replaces the 1997 WHO classification, which needed to be simplified as it had been found to be too restrictive, though the older classification is still widely used including by the World Health Organization's Regional Office for South-East Asia as of 2011. Severe dengue is defined as that associated with severe bleeding, severe organ dysfunction, or severe plasma leakage while all other cases are uncomplicated. The 1997 classification divided dengue into undifferentiated fever, dengue fever, and dengue hemorrhagic fever. Dengue hemorrhagic fever was subdivided further into grades I–IV. Grade I is the presence only of easy bruising or a positive tourniquet test in someone with fever, grade II is the presence of spontaneous bleeding into the skin and elsewhere, grade III is the clinical evidence of shock, and grade IV is shock so severe that blood pressure and pulse cannot be detected. Grades III and IV are referred to as "dengue shock syndrome".
Serological testing is typically used to obtain a definitive diagnosis. Most serological tests would succeed only after a certain period of time past the symptom onset (usually a week). The differential diagnosis list includes typhus, ehrlichiosis, leptospirosis, Lyme disease and virus-caused exanthema (measles or rubella).
Those diagnosed with Type A of the bacterial strain rarely die from it except in rare cases of severe intestinal complications. With proper testing and diagnosis, the mortality rate falls to less than 1%. Antibiotics such as azithromycin are particularly effective in treating the bacteria.
The infection is treated with antibiotics. Intravenous fluids and oxygen may be needed to stabilize the patient. There is a significant disparity between the untreated mortality and treated mortality rates: 10-60% untreated versus close to 0% treated with antibiotics within 8 days of initial infection. Tetracycline, Chloramphenicol, and doxycycline are commonly used. Infection can also be prevented by vaccination.
Some of the simplest methods of prevention and treatment focus on preventing infestation of body lice. Complete change of clothing, washing the infested clothing in hot water, and in some cases also treating recently used bedsheets all help to prevent typhus by removing potentially infected lice. Clothes also left unworn and unwashed for 7 days also cause both lice and their eggs to die, as they have no access to their human host. Another form of lice prevention requires dusting infested clothing with a powder consisting of 10% DDT, 1% malathion, or 1% permethrin, which kill lice and their eggs.
The illness can be treated with tetracyclines (doxycycline is the preferred treatment), chloramphenicol, macrolides or fluoroquinolones.
The diagnosis is made with serologic methods, either the classic Weil-Felix test
(agglutination of Proteus OX strains ), ELISA, or immunofluorescence assays in the bioptic material of the primary lesion.
On infection the microorganism can be found in blood and cerebrospinal fluid (CSF) for the first 7 to 10 days (invoking serologically identifiable reactions) and then moving to the kidneys. After 7 to 10 days the microorganism can be found in fresh urine. Hence, early diagnostic efforts include testing a serum or blood sample serologically with a panel of different strains.
Kidney function tests (blood urea nitrogen and creatinine) as well as blood tests for liver functions are performed. The latter reveal a moderate elevation of transaminases. Brief elevations of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and gamma-glutamyltransferase (GGT) levels are relatively mild. These levels may be normal, even in children with jaundice.
Diagnosis of leptospirosis is confirmed with tests such as enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR). The MAT (microscopic agglutination test), a serological test, is considered the gold standard in diagnosing leptospirosis. As a large panel of different leptospira must be subcultured frequently, which is both laborious and expensive, it is underused, especially in developing countries.
Differential diagnosis list for leptospirosis is very large due to diverse symptoms. For forms with middle to high severity, the list includes dengue fever and other hemorrhagic fevers, hepatitis of various causes, viral meningitis, malaria, and typhoid fever. Light forms should be distinguished from influenza and other related viral diseases. Specific tests are a must for proper diagnosis of leptospirosis.
Under circumstances of limited access (e.g., developing countries) to specific diagnostic means, close attention must be paid to the medical history of the patient. Factors such as certain dwelling areas, seasonality, contact with stagnant contaminated water (bathing, swimming, working on flooded meadows, etc.) or rodents in the medical history support the leptospirosis hypothesis and serve as indications for specific tests (if available).
"Leptospira" can be cultured in Ellinghausen-McCullough-Johnson-Harris medium (EMJH), which is incubated at 28 to 30 °C. The median time to positivity is three weeks with a maximum of three months. This makes culture techniques useless for diagnostic purposes but is commonly used in research.
Tetracycline-group antibiotics (doxycycline, tetracycline) are commonly used. Chloramphenicol is an alternative medication recommended under circumstances that render use of tetracycline derivates undesirable, such as severe liver malfunction, kidney deficiency, in children under nine years and in pregnant women. The drug is administered for seven to ten days.
The treatment for bacillary angiomatosis is erythromycin given for three to four months.
Although the presentation of scarlet fever can be clinically diagnosed, further testing may be required to distinguish it from other illnesses. Also, history of a recent exposure to someone with strep throat can be useful. There are two methods used to confirm suspicion of scarlet fever rapid antigen detection test and throat culture.
The rapid antigen detection test is a very specific test but not very sensitive. This means that if the result is positive (indicating that the Group A Strep Antigen was detected and therefore confirming that the patient has a Group A Strep Pharyngitis) then it is appropriate to treat them with antibiotics. However, if the Rapid Antigen Detection Test is negative (indicating that they do not have Group A Strep Pharyngitis), then a throat culture is required to confirm since it could be a false negative result. The throat culture is the current gold standard for diagnosis.
Serologic testing looks for the antibodies that the body produces against the streptococcal infection including antistreptolysin-O and antideoxyribonuclease B. It takes the body 2–3 weeks to make these antibodies so this type of testing is not useful for diagnosing a current infection. However, it is useful when assessing a patient who may have one of the complications from a previous streptococcal infection.
Throat cultures done after antibiotic therapy can tell you if the infection has been removed. These throat swabs however are not indicated because up to 25% of properly treated individuals can continue to carry the streptococcal infection while asymptomatic.
Although commercial tests are not readily available, diagnosis can be confirmed by serology-based assays or quantitative PCR by laboratories that have developed assays to perform such identification.
Feeding on a human who carries the bacterium infects the louse. "R. prowazekii" grows in the louse's gut and is excreted in its feces. The disease is then transmitted to an uninfected human who scratches the louse bite (which itches) and rubs the feces into the wound. The incubation period is one to two weeks. "R. prowazekii" can remain viable and virulent in the dried louse feces for many days. Typhus will eventually kill the louse, though the disease will remain viable for many weeks in the dead louse.
Epidemic typhus has historically occurred during times of war and deprivation. For example, typhus killed hundreds of thousands of prisoners in Nazi concentration camps during World War II. The deteriorating quality of hygiene in camps such as Auschwitz, Theresienstadt, and Bergen-Belsen created conditions where diseases such as typhus flourished. Situations in the twenty-first century with potential for a typhus epidemic would include refugee camps during a major famine or natural disaster. In the periods between outbreaks, when human to human transmission occurs less often, the flying squirrel serves as a zoonotic reservoir for the "Rickettsia prowazekii" bacterium.
Henrique da Rocha Lima in 1916 then proved that the bacterium "Rickettsia prowazekii" was the agent responsible for typhus; he named it after H. T. Ricketts and Stanislaus von Prowazek, two zoologists who had died from typhus while investigating epidemics. Once these crucial facts were recognized, Rudolf Weigl in 1930 was able to fashion a practical and effective vaccine production method by grinding up the insides of infected lice that had been drinking blood. It was, however, very dangerous to produce, and carried a high likelihood of infection to those who were working on it.
A safer mass-production-ready method using egg yolks was developed by Herald R. Cox in 1938. This vaccine was widely available and used extensively by 1943.
Diagnosis is usually based on serology (looking for an antibody response) rather than looking for the organism itself. Serology allows the detection of chronic infection by the appearance of high levels of the antibody against the virulent form of the bacterium. Molecular detection of bacterial DNA is increasingly used. Culture is technically difficult and not routinely available in most microbiology laboratories.
Q fever can cause endocarditis (infection of the heart valves) which may require transoesophageal echocardiography to diagnose. Q fever hepatitis manifests as an elevation of alanine transaminase and aspartate transaminase, but a definitive diagnosis is only possible on liver biopsy, which shows the characteristic fibrin ring granulomas.
There is no specific treatment for the disease. Pain killers and fluid replacement may be useful.
Abnormal laboratory findings seen in patients with Rocky Mountain spotted fever may include a low platelet count, low blood sodium concentration, or elevated liver enzyme levels. Serology testing and skin biopsy are considered to be the best methods of diagnosis. Although immunofluorescent antibody assays are considered some of the best serology tests available, most antibodies that fight against "R. rickettsii" are undetectable on serology tests the first seven days after infection.
Differential diagnosis includes dengue, leptospirosis, and, most recently, chikungunya and Zika virus infections.
Owing to the non-specific nature of the presentation of symptoms, diagnosis of malaria in non-endemic areas requires a high degree of suspicion, which might be elicited by any of the following: recent travel history, enlarged spleen, fever, low number of platelets in the blood, and higher-than-normal levels of bilirubin in the blood combined with a normal level of white blood cells. Reports in 2016 and 2017 from countries were malaria is common suggest high levels of over diagnosis due to insufficient or inaccurate laboratory testing.
Malaria is usually confirmed by the microscopic examination of blood films or by antigen-based rapid diagnostic tests (RDT). In some areas, RDTs need to be able to distinguish whether the malaria symptoms are caused by "Plasmodium falciparum" or by other species of parasites since treatment strategies could differ for non-"P. falciparum" infections. Microscopy is the most commonly used method to detect the malarial parasite—about 165 million blood films were examined for malaria in 2010. Despite its widespread usage, diagnosis by microscopy suffers from two main drawbacks: many settings (especially rural) are not equipped to perform the test, and the accuracy of the results depends on both the skill of the person examining the blood film and the levels of the parasite in the blood. The sensitivity of blood films ranges from 75–90% in optimum conditions, to as low as 50%. Commercially available RDTs are often more accurate than blood films at predicting the presence of malaria parasites, but they are widely variable in diagnostic sensitivity and specificity depending on manufacturer, and are unable to tell how many parasites are present.
In regions where laboratory tests are readily available, malaria should be suspected, and tested for, in any unwell person who has been in an area where malaria is endemic. In areas that cannot afford laboratory diagnostic tests, it has become common to use only a history of fever as the indication to treat for malaria—thus the common teaching "fever equals malaria unless proven otherwise". A drawback of this practice is overdiagnosis of malaria and mismanagement of non-malarial fever, which wastes limited resources, erodes confidence in the health care system, and contributes to drug resistance. Although polymerase chain reaction-based tests have been developed, they are not widely used in areas where malaria is common as of 2012, due to their complexity.
Malaria is classified into either "severe" or "uncomplicated" by the World Health Organization (WHO). It is deemed severe when "any" of the following criteria are present, otherwise it is considered uncomplicated.
- Decreased consciousness
- Significant weakness such that the person is unable to walk
- Inability to feed
- Two or more convulsions
- Low blood pressure (less than 70 mmHg in adults and 50 mmHg in children)
- Breathing problems
- Circulatory shock
- Kidney failure or hemoglobin in the urine
- Bleeding problems, or hemoglobin less than 50 g/L (5 g/dL)
- Pulmonary oedema
- Blood glucose less than 2.2 mmol/L (40 mg/dL)
- Acidosis or lactate levels of greater than 5 mmol/L
- A parasite level in the blood of greater than 100,000 per microlitre (µL) in low-intensity transmission areas, or 250,000 per µL in high-intensity transmission areas
Cerebral malaria is defined as a severe "P. falciparum"-malaria presenting with neurological symptoms, including coma (with a Glasgow coma scale less than 11, or a Blantyre coma scale greater than 3), or with a coma that lasts longer than 30 minutes after a seizure.
Various types of malaria have been called by the names below:
Protection is offered by Q-Vax, a whole-cell, inactivated vaccine developed by an Australian vaccine manufacturing company, CSL Limited. The intradermal vaccination is composed of killed "C. burnetii" organisms. Skin and blood tests should be done before vaccination to identify pre-existing immunity, because vaccinating people who already have an immunity can result in a severe local reaction. After a single dose of vaccine, protective immunity lasts for many years. Revaccination is not generally required. Annual screening is typically recommended.
In 2001, Australia introduced a national Q fever vaccination program for people working in “at risk” occupations. Vaccinated or previously exposed people may have their status recorded on the Australian Q Fever Register, which may be a condition of employment in the meat processing industry. An earlier killed vaccine had been developed in the Soviet Union, but its side effects prevented its licensing abroad.
Preliminary results suggest vaccination of animals may be a method of control. Published trials proved that use of a registered phase vaccine (Coxevac) on infected farms is a tool of major interest to manage or prevent early or late abortion, repeat breeding, anoestrus, silent oestrus, metritis, and decreases in milk yield when "C. burnetii" is the major cause of these problems.