Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
          
        
Homonymous hemianopsia secondary to posterior cerebral artery occlusion – may result in syndromes of memory impairment, opposite visual field loss (homonymous hemianopsia), and sometimes hemisensory deficits.
The PCA supplies the occipital lobe and the medial portion of the temporal lobe.
Infarction of occipital cortex typically causes macular sparing hemianopias due to dual blood supply.
Occlusion of the calcarine artery that results in infarction of the superior part of the occipital lobe causes a lower peripheral visual field defect.
Posterior cerebral artery penetrating branch occlusion may result in infarction of the posterior capsule, causing hemisensory loss, and (if low enough) a transient hemianopia may also occur.
Visual fields associated with chiasmal syndrome usually leads to an MRI. Contrast can delineate arterial aneurysms and will enhance most intrinsic chiasmal lesions. If a mass is confirmed on MRI, an endocrine panel can help determine if a pituitary adenoma is involved.
In patients with functional adenomas diagnosed by other means, visual field tests are a good screen to test for chiasmal involvement. Visual fields tests will delinate chiasmal syndromes because the missing fields will not cross the midline. Junctional scotomas classically show ipsilateral optic disc neuropathy with contralateral superotemporal defects. Bitemporal hemianopia with or without central scotoma is present if the lesions have affected the body of the chiasm. A posterior chiasm lesion should only produce defects on the temporal sides of the central visual field.
Prisms or "field expanders" that bend light have been prescribed for decades in patients with hemianopsia. Higher power Fresnel ("stick-on") prisms are commonly employed because they are thin and light weight, and can be cut and placed in different positions on a spectacle lens.
Peripheral prism spectacles expand the visual field of patients with hemifield visual defects and have the potential to improve visual function and mobility. Prism spectacles incorporate higher power prisms, with variable shapes and designs. The Gottlieb button prism, and the Peli superior and inferior horizontal bands are some proprietary examples of prism glasses. These high power prisms "create" artificial peripheral vision into the non-blind field for obstacle avoidance and motion detection.
EEG testing can diagnose patients with medial temporal lobe epilepsy. Epileptiform abnormalities including spikes and sharp waves in the medial temporal lobe of the brain can diagnose this condition, which can in turn be the cause of an epileptic patient's micropsia.
The Amsler grid test can be used to diagnose macular degeneration. For this test, patients are asked to look at a grid, and distortions or blank spots in the patient's central field of vision can be detected. A positive diagnosis of macular degeneration may account for a patient's micropsia.
A controlled size comparison task can be employed to evaluate objectively whether a person is experiencing hemimicropsia. For each trial, a pair of horizontally aligned circles is presented on a computer screen, and the person being tested is asked to decide which circle is larger. After a set of trials, the overall pattern of responses should display a normal distance effect where the more similar the two circles, the higher the number of errors. This test is able to effectively diagnose micropsia and confirm which hemisphere is being distorted.
Due to the large range of causes that lead to micropsia, diagnosis varies among cases. Computed tomography (CT) and magnetic resonance imaging (MRI) may find lesions and hypodense areas in the temporal and occipital lobes. MRI and CT techniques are able to rule out lesions as the cause for micropsia, but are not sufficient to diagnose the most common causes.
Bitemporal hemianopsia, also known as bitemporal heteronymous hemianopsia or bitemporal hemianopia, is the medical description of a type of partial blindness where vision is missing in the outer half of both the right and left visual field. It is usually associated with lesions of the optic chiasm, the area where the optic nerves from the right and left eyes cross near the pituitary gland.
In bitemporal hemianopsia vision is missing in the outer (temporal or lateral) half of both the right and left visual fields. Information from the temporal visual field falls on the nasal (medial) retina. The nasal retina is responsible for carrying the information along the optic nerve, and crosses to the other side at the optic chiasm. When there is compression at optic chiasm the visual impulse from both nasal retina are affected, leading to inability to view the temporal, or peripheral, vision. This phenomenon is known as bitemporal hemianopsia. Knowing the neurocircuitry of visual signal flow through the optic tract is very important in understanding bitemporal hemianopsia.
Bitemporal hemianopsia most commonly occurs as a result of tumors located at the mid-optic chiasm. Since the adjacent structure is the pituitary gland, some common tumors causing compression are pituitary adenomas and craniopharyngiomas. Also another relatively common neoplastic cause is meningiomas. A cause of vascular origin is an aneurysm of the anterior communicating artery which arise superior to the chiasm, enlarge, and compress it from above.
Individuals with quadrantanopia often modify their behavior to compensate for the disorder, such as tilting of the head to bring the affected visual field into view. Drivers with quadrantanopia, who were rated as safe to drive, drive slower, utilize more shoulder movements and, generally, corner and accelerate less drastically than typical individuals or individuals with quadrantanopia who were rated as unsafe to drive. The amount of compensatory movements and the frequency with which they are employed is believed to be dependent on the cognitive demands of the task; when the task is so difficult that the subject's spatial memory is no longer sufficient to keep track of everything, patients are more likely to employ compensatory behavior of biasing their gaze to the afflicted side. Teaching individuals with quadrantanopia compensatory behaviors could potentially be used to help train patients to re-learn to drive safely.
Binasal hemianopsia (or binasal hemianopia) is the medical description of a type of partial blindness where vision is missing in the inner half of both the right and left visual field. It is associated with certain lesions of the eye and of the central nervous system, such as congenital hydrocephalus.
Hemianopsia, or hemianopia, is a decreased vision or blindness (anopsia) in half the visual field, usually on one side of the vertical midline. The most common causes of this damage are stroke, brain tumor, and trauma.
This article deals only with permanent hemianopsia, and not with transitory or temporary hemianopsia, as identified by William Wollaston PRS in 1824. Temporary hemianopsia can occur in the aura phase of migraine.
Treatment varies for micropsia due to the large number of different causes for the condition.
Treatments involving the occlusion of one eye and the use of a prism fitted over an eyeglass lens have both been shown to provide relief from micropsia.
Micropsia that is induced by macular degeneration can be treated in several ways. A study called AREDS (age-related eye disease study) determined that taking dietary supplements containing high-dose antioxidants and zinc produced significant benefits with regard to disease progression. This study was the first ever to prove that dietary supplements can alter the natural progression and complications of a disease state. Laser treatments also look promising but are still in clinical stages.
In binasal hemianopsia, vision is missing in the inner (nasal or medial) half of both the right and left visual fields. Information from the nasal visual field falls on the temporal (lateral) retina. Those lateral retinal nerve fibers do not cross in the optic chiasm. Calcification of the internal carotid arteries can impinge the uncrossed, lateral retinal fibers leading to loss of vision in the nasal field.
Note: Clinical testing of visual fields (by confrontation) can produce a false positive result (particularly in inferior nasal quadrants).
When the pathology involves both eyes, it is either homonymous or Heteronymous.
Quadrantanopia, quadrantanopsia, or quadrant anopia refers to an anopia affecting a quarter of the field of vision.
It can be associated with a lesion of an optic radiation. While quadrantanopia can be caused by lesions in the temporal and parietal lobes, it is most commonly associated with lesions in the occipital lobe.
An anopsia or anopia is a defect in the visual field. If the defect is only partial, then the portion of the field with the defect can be used to isolate the underlying cause.
Types of partial anopsia:
- Hemianopsia
- Homonymous hemianopsia
- Heteronymous hemianopsia
- Binasal hemianopsia
- Bitemporal hemianopsia
- Superior hemianopia
- Inferior hemianopia
- Quadrantanopia
The term "anopsia" comes from the Ancient Greek ἀν- ("an-"), "un-" and ὄψις ("opsis") "sight".
Symptom-producing, or pathological, scotomata may be due to a wide range of disease processes, affecting any part of the visual system, including the retina (in particular its most sensitive portion, the macula), the optic nerve and even the visual cortex. A pathological scotoma may involve any part of the visual field and may be of any shape or size. A scotoma may include and enlarge the normal blind spot. Even a small scotoma that happens to affect central or macular vision will produce a severe visual disability, whereas a large scotoma in the more peripheral part of a visual field may go unnoticed by the bearer because of the normal reduced optical resolution in the peripheral visual field.
A scotoma (Greek σκότος/"skótos", "darkness"; plural: "scotomas" or "scotomata") is an area of partial alteration in the field of vision consisting of a partially diminished or entirely degenerated visual acuity that is surrounded by a field of normal – or relatively well-preserved – vision.
Every normal mammal eye has a scotoma in its field of vision, usually termed its blind spot. This is a location with no photoreceptor cells, where the retinal ganglion cell axons that compose the optic nerve exit the retina. This location is called the optic disc. There is no direct conscious awareness of visual scotomas. They are simply regions of reduced information within the visual field. Rather than recognizing an incomplete image, patients with scotomas report that things "disappear" on them.
The presence of the blind spot scotoma can be demonstrated subjectively by covering one eye, carefully holding fixation with the open eye, and placing an object (such as one's thumb) in the lateral and horizontal visual field, about 15 degrees from fixation (see the blind spot article). The size of the monocular scotoma is 5×7 degrees of visual angle.
A scotoma can be a symptom of damage to any part of the visual system, such as retinal damage from exposure to high-powered lasers, macular degeneration and brain damage.
The term "scotoma" is also used metaphorically in several fields. The common theme of all the figurative senses is of a gap not in visual function but in the mind's perception, cognition, or world view.
Chiasmal syndrome is the set of signs and symptoms that are associated with lesions of the optic chiasm, manifesting as various impairments of the sufferer's visual field according to the location of the lesion along the optic nerve. Pituitary adenomas are the most common cause; however, chiasmal syndrome may be caused by cancer, or associated with other medical conditions such as multiple sclerosis and neurofibromatosis.
There are few neuropsychological assessments that can definitively diagnose prosopagnosia. One commonly used test is the famous faces tests, where individuals are asked to recognize the faces of famous persons. However, this test is difficult to standardize. The Benton Facial Recognition Test (BFRT) is another test used by neuropsychologists to assess face recognition skills. Individuals are presented with a target face above six test faces and are asked to identify which test face matches the target face. The images are cropped to eliminate hair and clothes, as many people with prosopagnosia use hair and clothing cues to recognize faces. Both male and female faces are used during the test. For the first six items only one test face matches the target face; during the next seven items, three of the test faces match the target faces and the poses are different. The reliability of the BFRT was questioned when a study conducted by Duchaine and Nakayama showed that the average score for 11 self-reported prosopagnosics was within the normal range.
The test may be useful for identifying patients with apperceptive prosopagnosia, since this is mainly a matching test and they are unable to recognize both familiar and unfamiliar faces. They would be unable to pass the test. It would not be useful in diagnosing patients with associative prosopagnosia since they are able to match faces.
The Cambridge Face Memory Test (CFMT) was developed by Duchaine and Nakayama to better diagnose people with prosopagnosia. This test initially presents individuals with three images each of six different target faces. They are then presented with many three-image series, which contain one image of a target face and two distracters. Duchaine and Nakayama showed that the CFMT is more accurate and efficient than previous tests in diagnosing patients with prosopagnosia. Their study compared the two tests and 75% of patients were diagnosed by the CFMT, while only 25% of patients were diagnosed by the BFRT. However, similar to the BFRT, patients are being asked to essentially match unfamiliar faces, as they are seen only briefly at the start of the test. The test is not currently widely used and will need further testing before it can be considered reliable.
The 20-item Prosopagnosia Index (PI20) is a freely available and validated self-report questionnaire that is able to identify individuals with prosopagnosia. It has been validated against the famous faces test and Cambridge Face Memory Test, with evidence that PI20 scores are correlated with performance on these objective measures of face recognition. It can be downloaded from the Royal Society's Open Science website and on . Alternatively, the questionnaire can be completed online on the official website.
Management strategies for acquired prosopagnosia, such as a person who has difficulty recognizing people's faces after a stroke, generally have a low rate of success. Acquired prosopagnosia sometimes spontaneously resolves on its own.
Treatment consists of finding ways to bring the patient's attention toward the left, usually done incrementally, by going just a few degrees past midline, and progressing from there. Rehabilitation of neglect is often carried out by neuropsychologists, occupational therapist,
speech-language pathologists, neurologic music therapists, physical therapists, optometrists and orthoptists.
Forms of treatment that have been tested with variable reports of success include prismatic adaptation, where a prism lens is worn to pull the vision of the patient towards the left, constrained movement therapy where the "good" limb is constrained in a sling to encourage use of the contralesional limb. Eye-patching has similarly been used, placing a patch over the "good" eye. Pharmaceutical treatments have mostly focused on dopaminergic therapies such as bromocriptine, levodopa, and amphetamines, though these tests have had mixed results, helping in some cases and accentuating hemispatial neglect in others. Caloric vestibular stimulation (CVS) has been shown to bring about a brief remission in some cases. however this technique has been known to elicit unpleasant side-effects such as nystagmus, vertigo and vomiting.
A study done by Schindler and colleagues examined the use of neck muscle vibration on the contralesional posterior neck muscles to induce diversion of gaze from the subjective straight ahead. Subjects received 15 consecutive treatment sessions and were evaluated on different aspects of the neglect disorder including perception of midline, and scanning deficits. The study found that there is evidence that neck muscle stimulation may work, especially if combined with visual scanning techniques. The improvement was evident 2 months after the completion of treatment.
Other areas of emerging treatment options include the use of prisms, visual scanning training, mental imagery training, video feedback training, trunk rotation, galvanic vestibular stimulation (GVS), transcranial magnetic stimulation (TMS) and transcranial direct-current stimulation (tDCS). Of these emerging treatment options, the most studied intervention is prism adaptation and there is evidence of relatively long-term functional gains from comparatively short-term usage. However, all of these treatment interventions (particularly the stimulation techniques) are relatively new and randomised, controlled trial evidence is still limited. Further research is mandatory in this field of research in order to provide more support in evidence-based practice.
In a review article by Pierce & Buxbaum (2002), they concluded that the evidence for Hemispheric Activation Approaches, which focuses on moving the limb on the side of the neglect, has conflicting evidence in the literature. The authors note that a possible limitation in this approach is the requirement for the patients to actively move the neglected limb, which may not be possible for many patients. Constraint-Induced Therapy (CIT), appears to be an effective, long-term treatment for improving neglect in various studies. However, the use of CIT is limited to patients who have active control of wrist and hand extension. Prism Glasses, Hemispatial Glasses, and Eye-Patching have all appear to be effective in improving performance on neglect tests. Caloric Stimulation treatment appears to be effective in improving neglect; however, the effects are generally short-term. The review also suggests that Optokinetic Stimulation is effective in improving position sense, motor skills, body orientation, and perceptual neglect on a short-term basis. As with Caloric Stimulation treatment, long-term studies will be necessary to show its effectiveness. A few Trunk Rotation Therapy studies suggest its effectiveness in improving performance on neglect tests as well as the Functional Independence Measure (FIM). Some less studied treatment possibilities include treatments that target Dorsal Stream of visual processing, Mental Imagery Training, and Neck Vibration Therapy. Trunk rotation therapies aimed at improving postural disorders and balance deficits in patients with unilateral neglect, have demonstrated optimistic results in regaining voluntary trunk control when using specific postural rehabilitative devices. One such device is the Bon Saint Côme apparatus, which uses spatial exploratory tasks in combination with auditory and visual feedback mechanisms to develop trunk control. The Bon Saint Côme device has been shown to be effective with hemiplegic subjects due to the combination of trunk stability exercises, along with the cognitive requirements needed to perform the postural tasks.
Hemispatial neglect, also called hemiagnosia, hemineglect, unilateral neglect, spatial neglect, contralateral neglect, unilateral visual inattention, hemi-inattention, neglect syndrome or contralateral hemispatialagnosia, is a neuropsychological condition in which, after damage to one hemisphere of the brain is sustained, a deficit in attention to and awareness of one side of the field of vision is observed. It is defined by the inability of a person to process and perceive stimuli on one side of the body or environment, where that inability is not due to a lack of sensation. Hemispatial neglect is very commonly contralateral to the damaged hemisphere, but instances of ipsilesional neglect (on the same side as the lesion) have been reported.
If a suspected brain injury has occurred, the patient undergoes a series of medical imaging, which could include MRI(magnetic resonance imaging) or CT (computed tomography) scan. After the diagnosis of a brain injury, a speech and language pathologist will perform a variety of tests to determine the classification of aphasia. Additionally, the Boston Assessment of Severe Aphasia (BASA) is a commonly used assessment for diagnosing aphasia. BASA is used to determine treatment plans after strokes lead to symptoms of aphasia and tests both gestural and verbal responses. Cognitive functions can be assessed using the Cognitive Test Battery for Global Aphasia (CoBaGa). The CoBaGa is an appropriate measure to assess a person with severe aphasia because it does not require verbal responses, rather manipulative answers. The CoBaGa assesses cognitive functions such as attention, executive functions, logical reasoning, memory, visual-auditory recognition, and visual-spatial ability. Van Mourik et al. conducted a study in which they assessed the cognitive abilities of people with global aphasia using the Global Aphasic Neuropsychological Battery. This test assesses attention/concentration, memory, intelligence, and visual and auditory nonverbal recognition. The results of this study helped the researchers determine there were varying levels of severity among individuals with global aphasia.
Speech and language therapy is typically the primary treatment for individuals with aphasia. The goal of speech and language therapy is to increase the person’s communication abilities to a level functional for daily life. Goals are chosen based on collaboration between speech language pathologists, patients, and their family/caregivers. Goals should be individualized based on the person’s aphasia symptoms and communicative needs. In 2016, Wallace et al. found the following outcomes were commonly prioritized in therapy: communication, life participation, physical and emotional well-being, normalcy, and health and support services. However, available research is inconclusive about which specific approach to speech and language therapy is most effective in treating global aphasia.
Therapy can be either group or individual. Group therapies that integrate the use of visual aids allow for enhanced social and communication-skill development. Group therapy sessions typically revolve around simple, preplanned activities or games, and aim to facilitate social communication.
One particular therapy designed specifically for treatment of aphasia is Visual Action Therapy (VAT). VAT is a non-verbal gestural output program with 3 phases and 30 total steps. The program teaches unilateral gestures as symbolic representations of real life objects. Research on the effectiveness of VAT is limited and inconclusive.
One important therapy technique includes teaching family members and caregivers strategies for more effectively communicating with their loved ones. Research offers such strategies including, simplifying sentences and using common words, gaining the person's attention before speaking, using pointing and visual cues, allowing for adequate response time, and creating a quiet environment free of distractions.
Another approach to speech and language treatment is constraint-induced language therapy (CILT). CILT involves teaching the patient to use speech in small segments but avoid using gestures and familiar words . The speech language pathologist provides positive feedback throughout and ignores any mistakes made by the patient. The intensity with which this treatment is provided has been debated in the literature. One study, performed in 2015, compared the outcomes of patients with aphasia who received CILT for either 30 hours total over 2 weeks or 30 hours distributed over 10 weeks. Results showed that both groups made significant speech and language improvements. Overall, CILT is an effective treatment at a variety of intensities.
Research supporting the efficacy of pharmacological treatments for aphasia is limited. To date, no large scale clinical trials have proven benefits of pharmacological treatment.
Dyslexic children require special instruction for word analysis and spelling from an early age. While there are fonts that may help people with dyslexia better understand writing, this might simply be due to the added spacing between words. The prognosis, generally speaking, is positive for individuals who are identified in childhood and receive support from friends and family.
There are tests that can indicate with high probability whether a person is a dyslexic. If diagnostic testing indicates that a person may be dyslexic, such tests are often followed up with a full diagnostic assessment to determine the extent and nature of the disorder. Tests can be administered by a teacher or computer. Some test results indicate how to carry out teaching strategies.