Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A number of liver function tests (LFTs) are available to test the proper function of the liver. These test for the presence of enzymes in blood that are normally most abundant in liver tissue, metabolites or products. serum proteins, serum albumin, serum globulin,
alanine transaminase, aspartate transaminase, prothrombin time, partial thromboplastin time.
Imaging tests such as transient elastography, ultrasound and magnetic resonance imaging can be used to examine the liver tissue and the bile ducts. Liver biopsy can be performed to examine liver tissue to distinguish between various conditions; tests such as elastography may reduce the need for biopsy in some situations.
Cholestasis can be suspected when there is an elevation of both 5'-nucleotidase and ALP enzymes. With a few exceptions, the optimal test for cholestasis would be elevations of serum bile acid levels. However, this is not normally available in most clinical settings. The gamma-glutamyl transferase (GGT) enzyme was previously thought to be helpful in confirming a hepatic source of ALP; however, GGT elevations lack the necessary specificity to be a useful confirmatory test for ALP. Normally GGT and ALP are anchored to membranes of hepatocytes and are released in small amounts in hepatocellular damage. In cholestasis, synthesis of these enzymes is induced and they are made soluble. GGT is elevated because it leaks out from the bile duct cells due to pressure from inside bile ducts.
In a later stage of cholestasis AST, ALT and bilirubin may be elevated due to liver damage as a secondary effect of cholestasis.
Biochemical markers include a normal GGT for PFIC-1 and -2, with a markedly elevated GGT for PFIC-3. Serum bile acid levels are grossly elevated. Serum cholesterol levels are typically not elevated, as is seen usually in cholestasis, as the pathology is due to a transporter as opposed to an anatomical problem with biliary cells.
Anti-viral medications are available to treat infections such as hepatitis B. Other conditions may be managed by slowing down disease progression, for example:
- By using steroid-based drugs in autoimmune hepatitis.
- Regularly removing a quantity of blood from a vein (venesection) in the iron overload condition, hemochromatosis.
- Wilson’s disease, a condition where copper builds up in the body, can be managed with drugs which bind copper allowing it to be passed from your body in urine.
- In cholestatic liver disease, (where the flow of bile is affected due to cystic fibrosis) a medication called ursodeoxycholic acid (URSO, also referred to as UDCA) may be given.
On microscopic examination of liver biopsy specimens, PBC is characterized by interlobular bile duct destruction. These histopathologic findings in primary biliary cholangitis include the following:
- Inflammation of the bile ducts, characterized by intraepithelial lymphocytes, and
- Periductal epithelioid granulomata.
To diagnose PBC, it needs to be distinguished from other conditions with similar symptoms, such as autoimmune hepatitis or primary sclerosing cholangitis (PSC).
- Abnormalities in liver enzyme tests are usually present and elevated gamma-glutamyl transferase and alkaline phosphatase (ALP) are found in early disease. Elevations in bilirubin occur in advanced disease.
- Antimitochondrial antibodies are the characteristic serological marker for PBC, being found in 90%-95% of patients and only 1% of controls. PBC patients have AMA against pyruvate dehydrogenase complex (PDC-E2), an enzyme complex that is found in the mitochondria. Those people who are AMA negative but with disease similar to PBC have been found to have AMAs when more sensitive detection methods are employed.
- Other auto-antibodies may be present:
- Abdominal ultrasound, MR scanning (MRCP) or a CT scan is usually performed to rule out blockage to the bile ducts. This may be needed if a condition causing secondary biliary cirrhosis, such as other biliary duct disease or gallstones, needs to be excluded. A liver biopsy may help, and if uncertainty remains as in some patients, an endoscopic retrograde cholangiopancreatography (ERCP), an endoscopic investigation of the bile duct, may be performed.
Most patients can be diagnosed without invasive investigation, as the combination of anti-mitochondrial antibodies and typical (cholestatic) liver enzyme tests are considered diagnostic. However, a liver biopsy is needed to determine the stage of disease.
Extrahepatic cholestasis can usually be treated by surgery.
Pruritis in cholestatic jaundice is treated by Antihistamines, Ursodeoxycholic Acid, Phenobarbital
PSC is generally diagnosed on the basis of having at least two of three clinical criteria after secondary causes of sclerosing cholangitis have been ruled out:
- serum alkaline phosphatase (ALP) > 1.5x the upper limit of normal for longer than 6 months;
- cholangiography demonstrating biliary strictures or irregularity consistent with PSC; and,
- liver biopsy consistent with PSC (if available).
Historically, a cholangiogram would be obtained via endoscopic retrograde cholangiopancreatography (ERCP), which typically reveals "beading" (alternating strictures and dilation) of the bile ducts inside and/or outside the liver. Currently, the preferred option for diagnostic cholangiography, given its non-invasive yet highly accurate nature, is magnetic resonance cholangiopancreatography (MRCP), a magnetic resonance imaging technique. MRCP has unique strengths, including high spatial resolution, and can even be used to visualize the biliary tract of small animal models of PSC.
Most people with PSC have evidence of autoantibodies and abnormal immunoglobulin levels. For example, approximately 80% of people with PSC have perinuclear anti-neutrophil cytoplasmic antibodies; however, this and other immunoglobulin findings are not specific to those with PSC and are of unclear clinical significance/consequence. Antinuclear antibodies and anti-smooth muscle antibody are found in 20%-50% of PSC patients and, likewise, are not specific for the disease but may identify a subgroup of PSC patients who also have autoimmune hepatitis (i.e. PSC-AIH overlap syndrome).
Other markers which may be measured and monitored are a complete blood count, serum liver enzymes, bilirubin levels (usually grossly elevated), kidney function, and electrolytes. Fecal fat measurement is occasionally ordered when symptoms of malabsorption (e.g., gross steatorrhea) are prominent.
The differential diagnosis can include primary biliary cholangitis (formerly referred to as primary biliary cirrhosis), drug-induced cholestasis, cholangiocarcinoma, IgG4-related disease, post-liver transplantation non-anastomotic biliary strictures, and HIV-associated cholangiopathy. Primary sclerosing cholangitis and primary biliary cholangitis are distinct entities and exhibit important differences, including the site of tissue damage within the liver, associations with inflammatory bowel disease (IBD), which includes ulcerative colitis and Crohn's disease, response to treatment, and risks of disease progression.
Diagnosis is made by an assessment of symptoms, physical exam, and medical history, in conjunction with blood tests, a liver biopsy, and imaging. Diagnosis is often made following investigation of prolonged jaundice that is resistant to phototherapy and/or exchange transfusions, with abnormalities in liver enzyme tests. Ultrasound or other forms of imaging can confirm the diagnosis. Further testing may include radioactive scans of the liver and a liver biopsy.
The disease is typically progressive, leading to fulminant liver failure and death in childhood, in the absence of liver transplantation. Hepatocellular carcinoma may develop in PFIC-2 at a very early age; even toddlers have been affected.
The symptoms of neonatal hepatitis are similar to another infant liver disease, biliary atresia, in which the bile ducts are destroyed for reasons that are not understood. The infant with biliary atresia is also jaundiced and has an enlarged liver, but is growing well and does not have an enlarged spleen. These symptoms, along with a liver biopsy and blood tests, are needed to distinguish biliary atresia from neonatal hepatitis.
The differential diagnoses are extensive and include: Alagille syndrome, alpha-1-antitrypsin deficiency, Byler disease (progressive familial intrahepatic cholestasis), Caroli disease, choledochal cyst, cholestasis, congenital cytomegalovirus disease, congenital herpes simplex virus infection, congenital rubella, congenital syphilis, congenital toxoplasmosis, cystic fibrosis, galactosemia, idiopathic neonatal hepatitis, lipid storage disorders, neonatal hemochromatosis, and total parenteral nutrition-associated cholestasis.
A liver biopsy is performed, where a small piece of the liver is taken out of the child with a needle and examined with a microscope. The biopsy will often show that four or five liver cells are combined into a large cell that still functions, but not as well as a normal liver cell. This type of neonatal hepatitis is sometimes called "giant cell hepatitis."
Modern imaging techniques allow the diagnosis to be made more easily and without invasive imaging of the biliary tree. Commonly, the disease is limited to the left lobe of the liver. Images taken by CT scan, X-ray, or MRI show enlarged intrahepatic (in the liver) bile ducts due to ectasia. Using an ultrasound, tubular dilation of the bile ducts can be seen. On a CT scan, Caroli disease can be observed by noting the many fluid-filled, tubular structures extending to the liver. A high-contrast CT must be used to distinguish the difference between stones and widened ducts. Bowel gas and digestive habits make it difficult to obtain a clear sonogram, so a CT scan is a good substitution. When the intrahepatic bile duct wall has protrusions, it is clearly seen as central dots or a linear streak. Caroli disease is commonly diagnosed after this “central dot sign” is detected on a CT scan or ultrasound. However, cholangiography is the best, and final, approach to show the enlarged bile ducts as a result of Caroli disease.
Most patients presenting with jaundice will have various predictable patterns of liver panel abnormalities, though significant variation does exist. The typical liver panel will include blood levels of enzymes found primarily from the liver, such as the aminotransferases (ALT, AST), and alkaline phosphatase (ALP); bilirubin (which causes the jaundice); and protein levels, specifically, total protein and albumin. Other primary lab tests for liver function include gamma glutamyl transpeptidase (GGT) and prothrombin time (PT).
Some bone and heart disorders can lead to an increase in ALP and the aminotransferases, so the first step in differentiating these from liver problems is to compare the levels of GGT, which will only be elevated in liver-specific conditions. The second step is distinguishing from biliary (cholestatic) or liver (hepatic) causes of jaundice and altered laboratory results. The former typically indicates a surgical response, while the latter typically leans toward a medical response. ALP and GGT levels will typically rise with one pattern while aspartate aminotransferase (AST) and alanine aminotransferase (ALT) rise in a separate pattern. If the ALP (10–45 IU/L) and GGT (18–85) levels rise proportionately about as high as the AST (12–38 IU/L) and ALT (10–45 IU/L) levels, this indicates a cholestatic problem. On the other hand, if the AST and ALT rise is significantly higher than the ALP and GGT rise, this indicates an hepatic problem. Finally, distinguishing between hepatic causes of jaundice, comparing levels of AST and ALT can prove useful. AST levels will typically be higher than ALT. This remains the case in most hepatic disorders except for hepatitis (viral or hepatotoxic). Alcoholic liver damage may see fairly normal ALT levels, with AST 10x higher than ALT. On the other hand, if ALT is higher than AST, this is indicative of hepatitis. Levels of ALT and AST are not well correlated to the extent of liver damage, although rapid drops in these levels from very high levels can indicate severe necrosis. Low levels of albumin tend to indicate a chronic condition, while it is normal in hepatitis and cholestasis.
Lab results for liver panels are frequently compared by the magnitude of their differences, not the pure number, as well as by their ratios. The AST:ALT ratio can be a good indicator of whether the disorder is alcoholic liver damage (above 10), some other form of liver damage (above 1), or hepatitis (less than 1). Bilirubin levels greater than 10x normal could indicate neoplastic or intrahepatic cholestasis. Levels lower than this tend to indicate hepatocellular causes. AST levels greater than 15x tends to indicate acute hepatocellular damage. Less than this tend to indicate obstructive causes. ALP levels greater than 5x normal tend to indicate obstruction, while levels greater than 10x normal can indicate drug (toxic) induced cholestatic hepatitis or Cytomegalovirus. Both of these conditions can also have ALT and AST greater than 20× normal. GGT levels greater than 10x normal typically indicate cholestasis. Levels 5–10× tend to indicate viral hepatitis. Levels less than 5× normal tend to indicate drug toxicity. Acute hepatitis will typically have ALT and AST levels rising 20–30× normal (above 1000), and may remain significantly elevated for several weeks. Acetaminophen toxicity can result in ALT and AST levels greater than 50x normal.
Estimated median survival from diagnosis until liver transplant or PSC-related death is 21.3 years. Various models have been developed to help predict survival, but their use is generally best suited for research and not clinical purposes. A serum alkaline phosphatase less than 1.5 times the upper limit of normal has been associated with better outcomes but its utility in predicting long-term outcomes is unclear.
Cholestasis means "the slowing or stopping of bile flow" which can be caused by any number of diseases of the liver (which produces the bile), the gallbladder (which stores the bile), or biliary tract (also known as the biliary tree, the conduit that allows the bile to leave the liver and gallbladder and enter the small intestine). When this occurs, conjugated bilirubin and the waste products that usually would be cleared in bile reflux back into the bloodstream. This causes a primarily conjugated hyperbilirubinemia and jaundice; the liver conjugates the bile to make it water-soluble and because the bile has already been processed by the liver, when it gets backed up because of a blockage and is refluxed into the blood, the blood will have high levels of conjugated bilirubin. This is in contrast to primarily unconjugated hyperbilirubinemia which is the water-insoluble form that is bound to serum albumin; the liver has not had a chance to conjugate the bilirubin yet and can be caused either because too much unconjugated bilirubin is made (such as in massive hemolysis or ineffective erythropoiesis) or because too little is conjugated (Gilbert's disease or Crigler-Najjar syndrome). Unconjugated hyperbilirubinemia does not typically cause pruritus.
It is thought that bile salts that deposit into the skin are responsible for the pruritus (itching) but the levels of bilirubin in the bloodstream and the severity of the pruritus does not appear to be highly correlated. Patients that have been administered bile salt chelating agents do report some relief, however, and patients that have complete liver cell failure (and therefore cannot make these products to begin with) do not have pruritus. This suggests that products made by the liver must have some role in pruritus although it is not known exactly which product is responsible.
Given that ascending cholangitis usually occurs in the setting of bile duct obstruction, various forms of medical imaging may be employed to identify the site and nature of this obstruction. The first investigation is usually ultrasound, as this is the most easily available. Ultrasound may show dilation of the bile duct and identifies 38% of bile duct stones; it is relatively poor at identifying stones farther down the bile duct. Ultrasound can help distinguish between cholangitis and cholecystitis (inflammation of the gallbladder), which has similar symptoms to cholangitis but appears differently on ultrasound. A better test is magnetic resonance cholangiopancreatography (MRCP), which uses magnetic resonance imaging (MRI); this has a comparable sensitivity to ERCP. Smaller stones, however, can still be missed on MRCP depending on the quality of the hospital's facilities.
The gold standard test for biliary obstruction is still endoscopic retrograde cholangiopancreatography (ERCP). This involves the use of endoscopy (passing a tube through the mouth into the esophagus, stomach and thence to the duodenum) to pass a small cannula into the bile duct. At that point, radiocontrast is injected to opacify the duct, and X-rays are taken to get a visual impression of the biliary system. On the endoscopic image of the ampulla, one can sometimes see a protuberant ampulla from an impacted gallstone in the common bile duct or the frank extrusion of pus from the common bile duct orifice. On the X-ray images (known as cholangiograms), gallstones are visible as non-opacified areas in the contour of the duct. For diagnostic purposes, ERCP has now generally been replaced by MRCP. ERCP is only used first-line in critically ill patients in whom delay for diagnostic tests is not acceptable; however, if the index of suspicion for cholangitis is high, an ERCP is typically done to achieve drainage of the obstructed common bile duct.
If other causes rather than gallstones are suspected (such as a tumor), computed tomography and endoscopic ultrasound (EUS) may be performed to identify the nature of the obstruction. EUS may be used to obtain biopsy (tissue sample) of suspicious masses. EUS may also replace diagnostic ERCP for stone disease, although this depends on local availability.
Cholestatic pruritus is the sensation of itch due to nearly any liver disease, but the most commonly associated entities are primary biliary cirrhosis, primary sclerosing cholangitis, obstructive choledocholithiasis, carcinoma of the bile duct, cholestasis (also see drug-induced pruritus), and chronic hepatitis C viral infection and other forms of viral hepatitis.
Diagnosis may or may not be determined by an ultrasound, but most likely the disease and other biliary diseases of the liver, gallbladder, and bile duct are found by what is most commonly referred to as a hepatobiliary or HIDA scan. This type of imaging is known as cholescintigraphy.
Cholescintigraphy or hepatobiliary scintigraphy is scintigraphy of the hepatobiliary tract, including the gallbladder and bile ducts. The image produced by this type of medical imaging, called a cholescintigram, is also known by other names depending on which radiotracer is used, such as HIDA scan, PIPIDA scan, DISIDA scan, or BrIDA scan. Cholescintigraphic scanning is a nuclear medicine procedure to evaluate the health and function of the gallbladder and biliary system. A radioactive tracer is injected through any accessible vein and then allowed to circulate to the liver (which takes one hour), after which you are given another tracer which acts as an already digested meal (CCK) to see how fast it takes your gallbladder to fill up (which takes an additional 32 minutes), where it is excreted into the bile ducts and stored by the gallbladder until released into the duodenum.
Routine blood tests show features of acute inflammation (raised white blood cell count and elevated C-reactive protein level), and usually abnormal liver function tests (LFTs). In most cases the LFTs will be consistent with obstruction: raised bilirubin, alkaline phosphatase and γ-glutamyl transpeptidase. In the early stages, however, pressure on the liver cells may be the main feature and the tests will resemble those in hepatitis, with elevations in alanine transaminase and aspartate transaminase.
Blood cultures are often performed in people with fever and evidence of acute infection. These yield the bacteria causing the infection in 36% of cases, usually after 24–48 hours of incubation. Bile, too, may be sent for culture during ERCP (see below). The most common bacteria linked to ascending cholangitis are gram-negative bacilli: "Escherichia coli" (25–50%), Klebsiella (15–20%) and Enterobacter (5–10%). Of the gram-positive cocci, Enterococcus causes 10–20%.
Neonatal cholestasis defines persisting conjugated hyperbilirubinemia in the newborn with conjugated bilirubin levels exceeding 15% (5.0 mg/dL) of total bilirubin level. The disease is either due to defects in bile excretion from hepatocytes or impaired bile flow.
General presentations in neonates include abdominal pain and general GI upset. Physical examination may show palpable liver and enlarged spleen. Differential diagnosis typically presents with a host of possibilities, many of them not treatable. Histopathology shows dilated bile duct system at all levels and bile duct proliferation in response to back pressure. The incidence has been found to be about 1:2,500 live births.
Choledocholithiasis (stones in common bile duct) is one of the complications of cholelithiasis (gallstones), so the initial step is to confirm the diagnosis of cholelithiasis. Patients with cholelithiasis typically present with pain in the right-upper quadrant of the abdomen with the associated symptoms of nausea and vomiting, especially after a fatty meal. The physician can confirm the diagnosis of cholelithiasis with an abdominal ultrasound that shows the ultrasonic shadows of the stones in the gallbladder.
The diagnosis of choledocholithiasis is suggested when the liver function blood test shows an elevation in bilirubin and serum transaminases. Other indicators include raised indicators of ampulla of vater (pancreatic duct obstruction) such as lipases and amylases. In prolonged cases the INR may change due to a decrease in vitamin K absorption. (It is the decreased bile flow which reduces fat breakdown and therefore absorption of fat soluble vitamins).
The diagnosis is confirmed with either an MRCP (magnetic resonance cholangiopancreatography), an ERCP, or an intraoperative cholangiogram. If the patient must have the gallbladder removed for gallstones, the surgeon may choose to proceed with the surgery, and obtain a cholangiogram during the surgery. If the cholangiogram shows a stone in the bile duct, the surgeon may attempt to treat the problem by flushing the stone into the intestine or retrieve the stone back through the cystic duct.
On a different pathway, the physician may choose to proceed with ERCP before surgery. The benefit of ERCP is that it can be utilized not just to diagnose, but also to treat the problem. During ERCP the endoscopist may surgically widen the opening into the bile duct and remove the stone through that opening. ERCP, however, is an invasive procedure and has its own potential complications. Thus, if the suspicion is low, the physician may choose to confirm the diagnosis with MRCP, a non-invasive imaging technique, before proceeding with ERCP or surgery.
Biliary sludge is typically diagnosed by CT scan or transabdominal ultrasonography. Endoscopic ultrasonography is another more sensitive option. However, the gold standard is considered to be direct microscopy of aspirated gallbladder bile. This method is much more sensitive, although it is less practical.
Diagnosis is typically confirmed by ultrasound. Complications may be detected on blood tests.
A positive Murphy's sign is a common finding on physical examination during a gallbladder attack.