Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
No specific work up is defined. Stenosing tenosynovitis is a clinical diagnosis. However, if rheumatoid arthritis is suspected, laboratory evaluation of is granted (e.g. rheumatoid factor). Imaging studies are not needed to diagnose the condition. However, they can be valuable adjuvants to achieve a diagnosis. An ultrasound or MRI ( the most reliable study) can demonstrate increased thickness of the involved tendons. Thickening and hyper-vascularization of the pulley are the hallmarks of trigger fingers on sonography.
Diagnosis is made almost exclusively by history and physical examination alone. More than one finger may be affected at a time, though it usually affects the index, thumb, middle, or ring finger. The triggering is usually more pronounced late at night and into the morning, or while gripping an object firmly.
The natural history of disease for trigger finger remains uncertain.
There is some evidence that idiopathic trigger finger behaves differently in people with diabetes.
Recurrent triggering is unusual after successful injection and rare after successful surgery.
While difficulty extending the proximal interphalangeal joint may persist for months, it benefits from exercises to stretch the finger straighter.
Diagnosis of a trigger thumb is solely made by these clinical observations and further classified into four stages:
CMC OA is diagnosed based on clinical findings and radiologic imaging.
De Quervain syndrome is diagnosed clinically, based on history and physical examination, though diagnostic imaging such as x-ray may be used to rule out fracture, arthritis, or other causes, based on the patient's history and presentation. Finkelstein's test is a physical exam maneuver used to diagnose de Quervain syndrome. To perform the test, the examiner grasps the thumb and sharply deviates the hand toward the ulnar side. If sharp pain occurs along the distal radius (top of forearm, about an inch below the wrist), de Quervain's syndrome is likely. While a positive Finkelstein's test is often considered pathognomonic for de Quervain syndrome, the maneuver can also cause pain in those with osteoarthritis at the base of the thumb.
Differential diagnoses include:
1. Osteoarthritis of the first carpo-metacarpal joint
2. Intersection syndrome—pain will be more towards the middle of the back of the forearm and about 2–3 inches below the wrist
3. Wartenberg's syndrome
Electrophysiologic testing is an essential part of the evaluation of Anterior interosseous nerve syndromes. Nerve conduction studies may be normal or show pronator quadratus latency.
Electromyography (EMG) is generally most useful and will reveal abnormalities in the flexor pollicis longus, flexor digitorum profundus I and II and pronator quadratus muscles.
The role or MRI and ultrasound imaging in the diagnosis of Kiloh-Nevin syndrome is unclear.
If asked to make the "OK" sign, patients will make a triangle sign instead.
This 'Pinch-Test' exposes the weakness of the Flexor pollicis longus muscle and the flexor digitorum profundus I leading to weakness of the flexion of the distal phalanges of the thumb and index finger. This results in impairment of the pincer movement and the patient will have difficulty picking up a small item, such as a coin, from a flat surface.
RSIs are assessed using a number of objective clinical measures. These include effort-based tests such as grip and pinch strength, diagnostic tests such as Finkelstein's test for De Quervain's tendinitis, Phalen's Contortion, Tinel's Percussion for carpal tunnel syndrome, and nerve conduction velocity tests that show nerve compression in the wrist. Various imaging techniques can also be used to show nerve compression such as x-ray for the wrist, and MRI for the thoracic outlet and cervico-brachial areas.
Splinting, non-steroidal anti inflammatory drugs (NSAIDs), and corticosteroid injections are regarded as conservative first-line treatments for stenosing tenosynovitis. However, NSAIDs have been found to be ineffective as a monotherapy. Early treatment of trigger thumb has been associated with better treatment outcomes. Surgical treatment of trigger thumb can be complicated by injury to the digital nerves, scarring, tenderness, or a contracture of the joint. A significantly higher rate of symptom improvement has been observed when surgical management is paired with corticosteroid injections when compared to corticosteroid injections alone.
Occupational therapy is based on relieving the symptoms and reducing the inflammation. Overall cure rate, for dutifully applied non-operative treatment, is over 95% [citation needed]. Several modalities of treatment exists, depending on the chronicity and severity of the condition.
- Modification of hand activities
- Exercise & stretching
- Local heat
- Extension splinting during sleep (custom metacarpophalangeal joint (MCP joint) blocking splint, which has reported better patient's symptomatic relief and functionality and a distal interphalangeal (DIP) joint blocking splint)
Treatment consists of injection of methylprednisolone often combined with anesthetic (lidocaine) at the site of maximal inflammation or tenderness. The infiltration of the affected site can be performed blinded or sonographically guided, and often needs to be repeated 2 or three times to achieve remission. An irreducibly locked trigger, often associated with a flexion contracture of the PIP joint, should not be treated by injections.
- Transection of the fibrous annular pulley of the sheath
For symptoms that have persisted or recurred for more than 6 months and/or have been unresponsive to conservative treatment, surgical release of the pulley may be indicated. The main surgical approaches are percutaneous release and open release. The percutaneous approach, is preferred in some centers due to its reported shorter time of recuperation of motor function, less complications, and less painful. Complication of the surgical management include, persistent trigger finger, bowstringing, digital nerve injury, and continued triggering.
Of note, diabetes seems to be a poor prognostic indicator for nonoperative treatment and may develop stiffness after surgical release.
Most hand injuries are minor and can heal without difficulty. However, any time the hand or finger is cut, crushed or the pain is ongoing, it is best to see a physician. Hand injuries when not treated on time can result in long term morbidity.
Antibiotics in simple hand injuries do not typically require antibiotics as they do not change the chance of infection.
There are several types of treatment for congenital trigger thumb, conservative and surgical.
As with many musculoskeletal conditions, the management of de Quervain's disease is determined more by convention than scientific data. From the original description of the illness in 1895 until the first description of corticosteroid injection by Jarrod Ismond in 1955, it appears that the only treatment offered was surgery. Since approximately 1972, the prevailing opinion has been that of McKenzie (1972) who suggested that corticosteroid injection was the first line of treatment and surgery should be reserved for unsuccessful injections. A systematic review and meta-analysis published in 2013 found that corticosteroid injection seems to be an effective form of conservative management of de Quervain's syndrome in approximately 50% of patients, although more research is needed regarding the extent of any clinical benefits. Efficacy data are relatively sparse and it is not clear whether benefits affect the overall natural history of the illness.
Most tendinoses are self-limiting and the same is likely to be true of de Quervain's although further study is needed.
Palliative treatments include a splint that immobilized the wrist and the thumb to the interphalangeal joint and anti-inflammatory medication or acetaminophen. Systematic review and meta-analysis do not support the use of splinting over steroid injections.
Surgery (in which the sheath of the first dorsal compartment is opened longitudinally) is documented to provide relief in most patients. The most important risk is to the radial sensory nerve.
Some occupational and physical therapists suggest alternative lifting mechanics based on the theory that the condition is due to repetitive use of the thumbs during lifting. Physical/Occupational therapy can suggest activities to avoid based on the theory that certain activities might exacerbate one's condition, as well as instruct on strengthening exercises based on the theory that this will contribute to better form and use of other muscle groups, which might limit irritation of the tendons.
Some occupational and physical therapists use other treatments, in conjunction with Therapeutic Exercises, based on the rationale that they reduce inflammation and pain and promote healing: UST, SWD, or other deep heat treatments, as well as TENS, acupuncture, or infrared light therapy, and cold laser treatments. However, the pathology of the condition is not inflammatory changes to the synovial sheath and inflammation is secondary to the condition from friction. Teaching patients to reduce their secondary inflammation does not treat the underlying condition but may reduce their pain; which is helpful when trying to perform the prescribed exercise interventions.
Getting Physical Therapy before surgery or injections has been shown to reduce overall costs to patients and is a viable option to treat a wide array of musculoskeletal injuries.
There are a few different classifications conceived to categorize the spectrum of variety of congenital clasped thumb. In literature X classifications have been described for clasped thumb. The two most relevant of the existing classifications, to our opinion, are the classifications of McCarrol and Tjuyuguchi et al.
The most global format is the classification of McCarrol, which divides the congenital clasped thumbs into two groups. Group I includes the supple clasped thumb, when the thumb is only passively correctable. While complex clasped thumbs, thumbs which cannot be moved neither passively or actively, belong to group II.
Tjuyuguchi et al. designed a classification existing of three groups:
- Group I: The supple clasped thumb, where the thumb is passively abductable and extendable against the resistance of thumb flexors, without other digital anomalies.
- Group II: The clasped thumb with hand contractures, where the thumb is not passively extendable and abductable, with or without other digital anomalies.
- Group III: The clasped thumb which is associated with arthrogryposis.
About 1.8 million people go to the emergency department each year due to hand injuries.
One way to prevent this injury from occurring is to be informed and educated about the risks involved in hurting your wrist and hand. If patients do suffer from median nerve palsy, occupational therapy or wearing a splint can help reduce the pain and further damage. Wearing a dynamic splint, which pulls the thumb into opposition, will help prevent an excess in deformity. This splint can also assist in function and help the fingers flex towards the thumb. Stretching and the use of C-splints can also assist in prevention of further damage and deformity. These two methods can help in the degree of movement the thumb can have. While it is impossible to prevent trauma to your arms and wrist, patients can reduce the amount of compression by maintaining proper form during repetitive activities. Furthermore, strengthening and increasing flexibility reduces the risk of nerve compression.
There are few disorders on the differential diagnosis for carpal tunnel syndrome. Cervical radiculopathy can be mistaken for carpal tunnel syndrome since it can also cause abnormal or painful sensations in the hands and wrist. In contrast to carpal tunnel syndrome, the symptoms of cervical radiculopathy usually begins in the neck and travels down the affected arm and may be worsened by neck movement. Electromyography and imaging of the cervical spine can help to differentiate cervical radiculopathy from carpal tunnel syndrome if the diagnosis is unclear. Carpal tunnel syndrome is sometimes applied as a label to anyone with pain, numbness, swelling, and/or burning in the radial side of the hands and/or wrists. When pain is the primary symptom, carpal tunnel syndrome is unlikely to be the source of the symptoms. As a whole, the medical community is not currently embracing or accepting trigger point theories due to lack of scientific evidence supporting their effectiveness.
There is no consensus reference standard for the diagnosis of carpal tunnel syndrome. A combination of described symptoms, clinical findings, and electrophysiological testing may be used. CTS work up is the most common referral to the electrodiagnostic lab. Historically, diagnosis has been made with the combination of a thorough history and physical examination in conjunction with the use of electrodiagnostic (EDX) testing for confirmation. Additionally, evolving technology has included the use of ultrasonography in the diagnosis of CTS. However, it is well established that physical exam provocative maneuvers lack both sensitivity and specificity. Furthermore, EDX cannot fully exclude the diagnosis of CTS due to the lack of sensitivity. A Joint report published by the American Association of Neuromuscular and Electrodiagostic Medicine (AANEM), the American Academy of Physical Medicine and Rehabilitation (AAPM&R) and the American Academy of Neurology defines practice parameters, standards and guidelines for EDX studies of CTS based on an extensive critical literature review. This joint review concluded median and sensory nerve conduction studies are valid and reproducible in a clinical laboratory setting and a clinical diagnosis of CTS can be made with a sensitivity greater than 85% and specificity greater than 95%. Given the key role of electrodiagnostic testing in the diagnosis of CTS, The American Association of Neuromuscular & Electrodiagnostic Medicine has issued evidence-based practice guidelines, both for the diagnosis of carpal tunnel syndrome.
Numbness in the distribution of the median nerve, nocturnal symptoms, thenar muscle weakness/atrophy, positive Tinel's sign at the carpal tunnel, and abnormal sensory testing such as two-point discrimination have been standardized as clinical diagnostic criteria by consensus panels of experts. Pain may also be a presenting symptom, although less common than sensory disturbances.
Electrodiagnostic testing (electromyography and nerve conduction velocity) can objectively verify the median nerve dysfunction. Normal nerve conduction studies, however, do not exclude the diagnosis of CTS. Clinical assessment by history taking and physical examination can support a diagnosis of CTS. If clinical suspicion of CTS is high, treatment should be initiated despite normal electrodiagnostic testing.
Because lesions to different areas of the median nerve produce similar symptoms, clinicians perform a complete motor and sensory diagnosis along the nerve course. Decreased values of nerve conduction studies are used as indicators of nerve compression and may aid in determining the localization of compression.
Palpation above the elbow joint may reveal a bony consistency. Radiography images may show an abnormal bony spur outgrowth (supracondyloid process) just proximal to the elbow joint. Attached fibrous tissue (Struthers' ligament) may compress the median nerve as it passes underneath the process. This is also known as supracondylar process syndrome. Compression at this point may also occur without the bony spur; in this case, aponeurotic tissue found at the location of where Struthers' ligament should be is responsible for the compression.
If patients mention reproduction of symptoms to the forearm during elbow flexion of 120–130 degrees with the forearm in maximal supination, then the lesion may be localized to the area underneath the lacertus fibrosus (also known as bicipital aponeurosis). This is sometimes misdiagnosed as elbow strain and medial or lateral epicondylitis.
A lesion to the upper arm area, just proximal to where motor branches of forearm flexors originate, is diagnosed if the patient is unable to make a fist. More specifically, the patient's index and middle finger cannot flex at the MCP joint, while the thumb usually is unable to oppose. This is known as hand of benediction or Pope’s blessing hand. Another test is the bottle sign—the patient is unable to close all their fingers around a cylindrical object.
Carpal tunnel syndrome (CTS) is caused by compression of the median nerve as it passes under the carpal tunnel. Nerve conduction velocity tests through the hand are used to diagnosis CTS. Physical diagnostic tests include the Phalen maneuver or Phalen test and Tinel's sign. To relieve symptoms, patients may describe a motion similar to "shaking a thermometer", another indication of CTS.
Pronator teres syndrome (also known as pronator syndrome) is compression of the median nerve between the two heads of the pronator teres muscle. The Pronator teres test is an indication of the syndrome—the patient reports pain when attempting to pronate the forearm against resistance while extending the elbow simultaneously. The physician may notice an enlarged pronator teres muscle. Tinel's sign the area around the pronator teres heads should be positive. The key to discerning this syndrome from carpal tunnel syndrome is the absence of pain while sleeping. More recent literature collectively diagnose median nerve palsy occurring from the elbow to the forearm as pronator teres syndrome.
In uncooperative patients, the skin wrinkle test offers a pain-free way to identify denervation of the fingers. After submersion in water for 5 minutes, normal fingers will become wrinkled, whereas denervated fingers will not.
In "Ape hand deformity", the thenar muscles become paralyzed due to impingement and are subsequently flattened. This hand deformity is not by itself an individual diagnosis; it is seen only after the thenar muscles have atrophied. While the adductor pollicis remains intact, the flattening of the muscles causes the thumb to become adducted and laterally rotated. The opponens pollicis causes the thumb to flex and rotate medially, leaving the thumb unable to oppose. Carpal tunnel syndrome can result in thenar muscle paralysis which can then lead to ape hand deformity if left untreated. Ape hand deformity can also be seen in the hand of benediction deformity.
The Anterior Interosseus Nerve (AIN), a branch of the median nerve, only accounts for the movement of the fingers in hand and does not have any sensory capabilities. Therefore, the AIN syndrome is purely neuropathic. AINS is considered as an extremely rare condition because it accounts for less than 1% of neuropathies in the upper limb. Patients suffering from this syndrome have impaired distal interphalangeal joint, because of which they are unable to pinch anything or make and "OK" sign with their index finger and thumb. The syndrome can either happen from pinched nerve, or even dislocation of the elbow.
There are multiple classifications for the triphalangeal thumb. The reason for these different classifications is the heterogeneity in appearance of the TPT.
The classification according to Wood describes the shape of the extra phalanx: delta (Fig. 4), rectangular or full phalanx (Table 1). With the classification made by Buck-Gramcko a surgical treatment can be chosen (Table 1). Buck-Gramcko differentiates between six different shapes of the extra phalanx and associated malformations.
Table 1: Classifications of Wood and Buck-Gramcko
Three main points in diagnosing thumb hypoplasia are: width of the first web space, instability of the involved joints and function of the thumb. Thorough physical examination together with anatomic verification at operation reveals all the anomalies. An X-ray of the hand and thumb in two directions is always mandatory. When the pediatrician thinks the condition is associated with some kind of syndrome other tests will be done. More subtle manifestations of types I and II may not be recognized, especially when more obvious manifestations of longitudinal radial deficiency in the opposite extremity are present. Therefore, a careful examination of both hands is important.
Treatment of congenital clasped thumb includes two types of therapy: conservative and surgical.
Surgical decompression can give excellent results if the clinical picture and the EMG suggest a compression neuropathy.
In brachial plexus neuritis, conservative management may be more appropriate.
Spontaneous recovery has been reported, but is said to be delayed and incomplete.
There is a role for physiotherapy and this should be directed specifically towards the pattern of pain and symptoms. Soft tissue massage, stretches and exercises to directly mobilise the nerve tissue may be used.
Radial neuropathy is not necessarily permanent. The majority of radial neuropathies due to an acute compressive event (Saturday night palsy) do recover without intervention. If the injury is demyelinating (meaning only the myelin sheath surrounding the nerve is damaged), then full recovery typically occurs within 2–4 weeks. If the injury is axonal (meaning the underlying nerve fiber itself is damaged) then full recovery may take months or years, or may never occur. EMG and nerve conduction studies are typically performed to diagnose the extent and distribution of the damage, and to help with prognosis for recovery.
In order to diagnose radial nerve dysfunction, a doctor will conduct a physical examination. During the exam of the arm, wrist, and hand, the doctor will look for: difficulty straightening the arm at the elbow; trouble turning the arm outward; difficulty lifting the wrist; muscle loss or atrophy in the forearm; weakness of the wrist and/or fingers. In addition, tests may need to be conducted to confirm the doctors findings. These tests include: blood tests; MRI of the neck and shoulders to screen for other problems; nerve biopsy; nerve conduction tests; ultrasound of the elbow.
The ulnar collateral ligament is an important stabilizer of the thumb. Thumb instability resulting from disruption of the UCL profoundly impairs the overall function of the involved hand. Because of this, it is critical that these injuries receive appropriate attention and treatment.
In most cases of a complete tear, the aponeurosis of the adductor pollicis muscle may be interposed between the bones of the MCP joint and the torn ligament. When this condition (referred to as a Stener lesion) occurs, the adequate healing of the tear is prevented altogether. For a Stener lesion to occur, a complete tear of the ulnar collateral ligament must be present. However, the Stener lesion can occur even in the absence of a tear of the accessory collateral ligament or volar plate. The Stener lesion is present in more than 80% of complete ruptures of the UCL of the thumb.
When approaching this type of injury, the physician must first determine whether there is an incomplete rupture (or sprain) of the UCL, or a complete rupture. If the UCL is completely disrupted, the physician must then determine whether there is interposition of the adductor aponeurosis (Stener lesion), or simply a complete rupture of the UCL with anatomic or near-anatomic position. Radiographs are helpful in determining the possible presence of an avulsion fracture of the proximal phalanx insertion site of the ulnar collateral ligament. Stress examination, or one done under fluoroscopic guidance, can help determine the integrity of the ligament.
Most gamekeeper's thumb partial injuries are treated by simply immobilizing the joint in a thumb spica splint or a modified wrist splint and allowing the ligament to heal. However, near total or total tears of the UCL may require surgery to achieve a satisfactory repair, especially if accompanied by a Stener lesion.