Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The tests to verify Sack–Barabas syndrome are biochemical samples such as collagen typing (performed on a skin biopsy sample) or collagen gene mutation testing. There is no cure for Ehlers-Danlos syndrome, so individual problems and symptoms must be evaluated and cared for accordingly.
The key for managing Sack–Barabas syndrome is for the patient to be aware of their disease. Close follow up and planning of interventions can significantly prolong and maintain the quality of life of a patient with this disease.
Pregnant affected women must take special care due to the increased risk of premature death due to rupture of arteries, bowel or uterine rupture with a reported mortality rate of 50%.
Genetic counselling is recommended for prospective parents with a family history of Ehlers–Danlos syndrome. Affected parents should be aware of the type of Ehlers-Danlos syndrome they have and its mode of inheritance.
A diagnosis can be made by an evaluation of medical history and clinical observation. The Beighton criteria are widely used to assess the degree of joint hypermobility. DNA and biochemical studies can help identify affected individuals. Diagnostic tests include collagen gene mutation testing, collagen typing via skin biopsy, echocardiogram, and lysyl hydroxylase or oxidase activity. However, these tests are not able to confirm all cases, especially in instances of an unmapped mutation, so clinical evaluation by a geneticist remains essential. If there are multiple affected individuals in a family, it may be possible to perform prenatal diagnosis using a DNA information technique known as a linkage study. There is poor knowledge about EDS among practitioners.
Diagnosis involves consideration of physical features and genetic testing. Presence of split uvula is a differentiating characteristic from Marfan Syndrome, as well as the severity of the heart defects. Loeys-Dietz Syndrome patients have more severe heart involvement and it is advised that they be treated for enlarged aorta earlier due to the increased risk of early rupture in Loeys-Dietz patients. Because different people express different combinations of symptoms and the syndrome was identified in 2005, many doctors may not be aware of its existence, although clinical guidelines were released in 2014-2015. Dr. Harold Dietz, Dr. Bart Loeys, and Dr. Kenneth Zahka are considered experts in this condition.
During pregnancy, even in the absence of preconception cardiovascular abnormality, women with Marfan syndrome are at significant risk of aortic dissection, which is often fatal even when rapidly treated. Women with Marfan syndrome, then, should receive a thorough assessment prior to conception, and echocardiography should be performed every six to 10 weeks during pregnancy, to assess the aortic root diameter. For most women, safe vaginal delivery is possible.
Marfan syndrome is expressed dominantly. This means a child with one parent a bearer of the gene has a 50% probability of getting the syndrome. In 1996, the first preimplantation genetic testing (PGT) therapy for Marfan was conducted; in essence PGT means conducting a genetic test on early-stage IVF embryo cells and discarding those embryos affected by the Marfan mutation.
In terms of the diagnosis of arterial tortuosity syndrome can be done via genetic testing, as well as the following listed below:
- CT
- MRI
- Echocardiogram
- Physical exam(for specific characteristics)
The treatment of arterial tortuosity syndrome entails possible surgery for aortic aneurysms, as well as, follow ups which should consist of EGC. The prognosis of this condition has it at about 12% mortality
There are several disorders that share some characteristics with Ehlers–Danlos syndrome. For example, in cutis laxa the skin is loose, hanging, and wrinkled. In EDS, the skin can be pulled away from the body but is elastic and returns to normal when let go. In Marfan syndrome, the joints are very mobile and similar cardiovascular complications occur. People with EDS tend to have a "Marfanoid" appearance (e.g., tall, skinny, long arms and legs, "spidery" fingers). However, physical appearance and features in several types of Ehlers–Danlos syndrome also have characteristics including short stature, large eyes, and the appearance of a small mouth and chin, due to a small palate. The palate can have a high arch, causing dental crowding. Blood vessels can sometimes be easily seen through translucent skin, especially on the chest. The genetic connective tissue disorder, Loeys-Dietz Syndrome, also has symptoms that overlap with EDS.
In the past, Menkes disease, a copper metabolism disorder, was thought to be a form of Ehlers–Danlos syndrome. It is not uncommon for patients to be misdiagnosed with fibromyalgia, bleeding disorders or other disorders that can mimic EDS symptoms before a correct diagnosis is made. Because of these similar disorders and complications that can arise from an un-monitored case of EDS, a correct diagnosis is very important. Pseudoxanthoma elasticum (PXE) is worth consideration in diagnosing a patient.
In 2010 the Ghent nosology was revised, and new diagnostic criteria superseded the previous agreement made in 1996. The seven new criteria can lead to a diagnosis:
In the absence of a family history of MFS:
1. Aortic root Z-score ≥ 2 AND ectopia lentis
2. Aortic root Z-score ≥ 2 AND an FBN1 mutation
3. Aortic root Z-score ≥ 2 AND a systemic score* > 7 points
4. Ectopia lentis AND an FBN1 mutation with known aortic pathology
In the presence of a family history of MFS (as defined above):
1. Ectopia lentis
2. Systemic score* ≥ 7
3. Aortic root Z-score ≥ 2
- Points for systemic score:
- Wrist AND thumb sign = 3 (wrist OR thumb sign = 1)
- Pectus carinatum deformity = 2 (pectus excavatum or chest asymmetry = 1)
- Hindfoot deformity = 2 (plain pes planus = 1)
- Dural ectasia = 2
- Protrusio acetabuli = 2
- pneumothorax = 2
- Reduced upper segment/lower segment ratio AND increased arm/height AND no severe scoliosis = 1
- Scoliosis or thoracolumbar kyphosis = 1
- Reduced elbow extension = 1
- Facial features (3/5) = 1 (dolichocephaly, enophthalmos, downslanting palpebral fissures, malar hypoplasia, retrognathia)
- Skin striae (stretch marks) = 1
- Myopia > 3 diopters = 1
- Mitral valve prolapse 1⁄4 1
The thumb sign (Steinberg's sign) is elicited by asking the patient to flex the thumb as far as possible and then close the fingers over it. A positive thumb sign is where the entire distal phalanx is visible beyond the ulnar border of the hand, caused by a combination of hypermobility of the thumb as well as a thumb which is longer than usual.
The wrist sign (Walker's sign) is elicited by asking the patient to curl the thumb and fingers of one hand around the other wrist. A positive wrist sign is where the little finger and the thumb overlap, caused by a combination of thin wrists and long fingers.
The heterogeneity of the Klippel–Feil syndrome has made it difficult to outline the diagnosis as well as the prognosis classes for this disease. Because of this, it has complicated the exact explanation of the genetic cause of the syndrome.
The prognosis for most individuals with KFS is good if the disorder is treated early on and appropriately. Activities that can injure the neck should be avoided, as it may contribute to further damage. Other diseases associated with the syndrome can be fatal if not treated, or if found too late to be treatable.
As there is no known cure, Loeys–Dietz syndrome is a lifelong condition. Due to the high risk of death from aortic aneurysm rupture, patients should be followed closely to monitor aneurysm formation, which can then be corrected with interventional radiology or vascular surgery.
Previous research in laboratory mice has suggested that the angiotensin II receptor antagonist losartan, which appears to block TGF-beta activity, can slow or halt the formation of aortic aneurysms in Marfan syndrome. A large clinical trial sponsored by the National Institutes of Health is currently underway to explore the use of losartan to prevent aneurysms in Marfan syndrome patients. Both Marfan syndrome and Loeys–Dietz syndrome are associated with increased TGF-beta signaling in the vessel wall. Therefore, losartan also holds promise for the treatment of Loeys–Dietz syndrome. In those patients in which losartan is not halting the growth of the aorta, irbesartan has been shown to work and is currently also being studied and prescribed for some patients with this condition.
If an increased heart rate is present, atenolol is sometimes prescribed to reduce the heart rate to prevent any extra pressure on the tissue of the aorta. Likewise, strenuous physical activity is discouraged in patients, especially weight lifting and contact sports.
Although patients will often mistake the pain of Tietze's syndrome for a myocardial infarction (heart attack), the syndrome does not progress to cause harm to any organs.
It is important to rule out a heart attack, as the symptoms may be similar. After assessment, providers often reassure patients that their symptoms are not associated with a heart attack, although they may need to treat the pain, which in some cases can be severe enough to cause significant but temporary disability to the patient.
Patients are usually managed by a multidisciplinary team including surgeons, gynecologists, and dermatologists because of the complex nature of this disorder. Follow-up for the increased risk of breast cancer risk includes monthly breast self-examination, annual breast examination, and mammography at age 30 or five years earlier than the youngest age of breast cancer in the family. The magnitude of the risk of breast cancer justifies routine screening with breast MRI as per published guidelines.
Different features of the dysostosis are significant. Radiological imaging helps confirm the diagnosis. During gestation (pregnancy), clavicular size can be calculated using available nomograms. Wormian bones can sometimes be observed in the skull.
Diagnosis of CCD spectrum disorder is established in an individual with typical clinical and radiographic findings and/or by the identification of a heterozygous pathogenic variant in RUNX2 (CBFA1).
Worth syndrome is caused by a mutation in the LRP5 gene, located on human chromosome 11q13.4. The disorder is inherited in an autosomal dominant fashion. This indicates that the defective gene responsible for a disorder is located on an autosome (chromosome 11 is an autosome), and only one copy of the defective gene is sufficient to cause the disorder, when inherited from a parent who has the disorder.
Treatment for Klippel–Feil syndrome is symptomatic and may include surgery to relieve cervical or craniocervical instability and constriction of the spinal cord, and to correct scoliosis.
Failing non-surgical therapies, spinal surgery may provide relief. Adjacent segment disease and scoliosis are two examples of common symptoms associated with Klippel–Feil syndrome, and they may be treated surgically. The three categories treated for types of spinal cord deficiencies are massive fusion of the cervical spine (Type I), the fusion of 1 or 2 vertebrae (Type II), and the presence of thoracic and lumbar spine anomalies in association with type I or type II Klippel–Feil syndrome (Type III).
Adjacent segment disease can be addressed by performing cervical disc arthroplasty using a device such as the Bryan cervical disc prosthesis.
The option of the surgery is to maintain range of motion and attenuate the rate of adjacent segment disease advancement without fusion.
Another type of arthroplasty that is becoming an alternate choice to spinal fusion is Total Disc Replacement. Total disc replacement objective is to reduce pain or eradicate it.
Spinal fusion is commonly used to correct spinal deformities such as scoliosis. Arthrodesis is the last resort in pain relieving procedures, usually when arthroplasties fail.
MASS syndrome a medical disorder similar to Marfan syndrome.
MASS stands for: mitral valve prolapse, aortic root diameter at upper limits of normal for body size, stretch marks of the skin, and skeletal conditions similar to Marfan syndrome. MASS Phenotype is a connective tissue disorder that is similar to Marfan syndrome. It is caused by a similar mutation in the gene called fibrillin-1 that tells the body how to make an important protein found in connective tissue. This mutation is an autosomal dominant mutation in the FBN1 gene that codes for the extracellular matrix protein fibrillin-1; defects in the fibrillin-1 protein cause malfunctioning microfibrils that result in improper stretching of ligaments, blood vessels, and skin.
Someone with MASS phenotype has a 50 percent chance of passing the gene along to each child.
People with features of MASS Phenotype need to see a doctor who knows about connective tissue disorders for an accurate diagnosis; often this will be a medical geneticist. It is very important that people with MASS Phenotype get an early and correct diagnosis so they can get the right treatment. Treatment options for MASS phenotype are largely determined on a case-by-case basis and generally address the symptoms as opposed to the actual disorder; furthermore, due to the similarities between these two disorders, individuals with MASS phenotype follow the same treatment plans as those with Marfan syndrome.
MASS stands for the Mitral valve, myopia, Aorta, Skin and Skeletal features of the disorder. MASS Phenotype affects different people in different ways.
In MASS Phenotype:
Mitral valve prolapse may be present. This is when the flaps of one of the heart’s valves (the mitral valve, which regulates blood flow on the left side of the heart) are “floppy” and don’t close tightly. Aortic root diameter may be at the upper limits of normal for body size, but unlike Marfan syndrome there is not progression to aneurysm or predisposition to dissection. Skin may show stretch marks unrelated to weight gain or loss (striae). Skeletal features, including curvature of the spine (scoliosis), chest wall deformities, and joint hypermobility, may be present. People with MASS Phenotype do not have lens dislocation but have myopia, also known as nearsightedness.
MASS syndrome and Marfan syndrome are overlapping connective tissue disorders. Both can be caused by mutations in the gene encoding a protein called fibrillin. These conditions share many of the same signs and symptoms including long limbs and fingers, chest wall abnormalities (indented chest bone or protruding chest bone), flat feet, scoliosis, mitral valve prolapse, loose or hypextensible joints, highly arched roof of the mouth, and mild dilatation of the aortic root.
Individuals with MASS syndrome do not have progressive aortic enlargement or lens dislocation, while people with Marfan syndrome do. Skin involvement in MASS syndrome is typically limited to stretch marks (striae distensae). Also, the skeletal symptoms of MASS syndrome are generally mild.
Symptoms include gingival fibromatosis, associated with hypoplasia of the distal phalanges, nail dysplasia, joint hypermobility, and sometimes hepatosplenomegaly. The nose and pinnae are usually large and poorly developed, which gives the individuals with the syndrome abnormal facial characteristics. Mental retardation may also occur. Both males and females are equally affected. Gingival fibromatosis is usually present at birth or appears short after. The term Zimmermann–Laband was coined by Carl Jacob Witkop in 1971.
Worth syndrome, also known as benign form of Worth hyperostosis corticalis generalisata with torus platinus, autosomal dominant osteosclerosis, autosomal dominant endosteal hyperostosis or Worth disease, is a rare autosomal dominant congenital disorder that is caused by a mutation in the LRP5 gene. It is characterized by increased bone density and benign bony structures on the palate.
Zimmermann–Laband syndrome (ZLS), also known as Laband–Zimmermann syndrome, and Laband's syndrome, is an extremely rare autosomal dominant congenital disorder.
As of July 2000, hypermobility was diagnosed using the Brighton criteria. The Brighton criteria do not replace the Beighton score but instead use the previous score in conjunction with other symptoms and criteria. HMS is diagnosed in the presence of either two major criteria, one major and two minor criteria, or four minor criteria. The criteria are:
CLOVES syndrome is an extremely rare overgrowth syndrome, with complex vascular anomalies. CLOVES syndrome affects people with various symptoms, ranging from mild fatty soft-tissue tumors to vascular malformations encompassing the spine or internal organs. CLOVES syndrome is closely linked to other overgrowth disorders like proteus syndrome, Klippel–Trénaunay syndrome, Sturge–Weber syndrome, and hemihypertrophy, to name a few.
'CLOVES' is an acronym for:
- C is for congenital.
- L is for lipomatous, which means pertaining to or resembling a benign tumor made up of mature fat cells. Most CLOVES patients present with a soft fatty mass at birth, often visible on one or both sides of the back, legs and/or abdomen.
- O is for overgrowth, because there is an abnormal increase in the size of the body or a body part that is often noted at birth. Patients with CLOVES may have affected areas of their bodies that grow faster than in other people. Overgrowth of extremities (usually arms or legs) is seen, with large wide hands or feet, large fingers or toes, wide space between fingers, and asymmetry of body parts.
- V is for vascular malformations, which are blood vessel abnormalies. Patients with CLOVES have different venous, capillary, and lymphatic channels - typically capillary, venous and lymphatic malformations are known as "slow flow" lesions. Some patients with CLOVES have combined lesions (which are fast flow) and some have aggressive vascular malformation known as arteriovenous malformations (AVM). The effect of a vascular malformation varies per patient based on the type, size, and location of the malformation, and symptoms can vary.
- E is for Epidermal naevi, which are sharply-circumscribed chronic lesions of the skin, and benign. These are often flesh-colored, raised or warty.
- S is for Spinal/Skeletal Anomalies or scoliosis. Some patients with CLOVES have tethered spinal cord, vascular malformations in or around their spines, and other spinal differences. High-flow aggressive spinal lesions (like AVM) can cause serious neurological deficits/paralysis.
The syndrome was first recognised by Saap and colleagues who recognised the spectrum of symptoms from a set of seven patients. In this initial description the syndrome is named CLOVE syndrome. It is believed that the first description of a case of CLOVES syndrome was written by Hermann Friedberg, a German physician, in 1867.
The procedure of diagnosis for Cramp Fasciculation Syndrome (CFS) is closely aligned with the diagnosis procedure for benign fasciculation syndrome (BFS). The differentiation between a diagnosis of BFS versus CFS is usually more severe and prominent pain, cramps and stiffness associated with CFS.
Lipomatosis is believed to be an autosomal dominant condition in which multiple lipomas are present on the body. Many discrete, encapsulated lipomas form on the trunk and extremities, with relatively few on the head and shoulders. In 1993, a genetic polymorphism within lipomas was localized to chromosome 12q15, where the HMGIC gene encodes the high-mobility-group protein isoform I-C. This is one of the most commonly found mutations in solitary lipomatous tumors but lipomas often have multiple mutations. Reciprocal translocations involving chromosomes 12q13 and 12q14 have also been observed within.
Although this condition is benign, it can sometimes be very painful depending on location of the lipomas. Some patients who are concerned with cosmetics seek removal of individual lipomas. Removal can include simple excision, endoscopic removal, or liposuction.
Other entities which are accompanied by multiple lipomas include Proteus syndrome, Cowden syndrome and related disorders due to PTEN gene mutations, benign symmetric lipomatosis (Madelung disease),Dercum's Disease, familial lipodystrophy, hibernomas, epidural steroid injections with epidural lipomatosis, and familial angiolipomatosis.
Diagnosis is visual with measurement of spot size. The number of spots can have clinical significance for diagnosis of associated disorders such as Neurofibromatosis type I. Greater than or equal to 6 spots of at least 5mm in diameter in pre-pubertal children and at least 15mm in post-pubertal individuals is one of the major diagnostic criteria for NF1.