Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Computed tomography (CT scan): A CT scan may be normal if it is done soon after the onset of symptoms. A CT scan is the best test to look for bleeding in or around your brain. In some hospitals, a perfusion CT scan may be done to see where the blood is flowing and not flowing in your brain.
Magnetic resonance imaging (MRI scan): A special MRI technique (diffusion MRI) may show evidence of an ischemic stroke within minutes of symptom onset. In some hospitals, a perfusion MRI scan may be done to see where the blood is flowing and not flowing in your brain.
Angiogram: a test that looks at the blood vessels that feed the brain. An angiogram will show whether the blood vessel is blocked by a clot, the blood vessel is narrowed, or if there is an abnormality of a blood vessel known as an aneurysm.
Carotid duplex: A carotid duplex is an ultrasound study that assesses whether or not you have atherosclerosis (narrowing) of the carotid arteries. These arteries are the large blood vessels in your neck that feed your brain.
Transcranial Doppler (TCD): Transcranial Doppler is an ultrasound study that assesses whether or not you have atherosclerosis (narrowing) of the blood vessels inside of your brain. It can also be used to see if you have emboli (blood clots) in your blood vessels.
The modality of choice is computed tomography (CT scan) without contrast, of the brain. This has a high sensitivity and will correctly identify over 95 percent of cases—especially on the first day after the onset of bleeding. Magnetic resonance imaging (MRI) may be more sensitive than CT after several days. Within six hours of the onset of symptoms CT picks up 98.7% of cases.
Lumbar puncture, in which cerebrospinal fluid (CSF) is removed from the subarachnoid space of the spinal canal using a hypodermic needle, shows evidence of hemorrhage in 3 percent of people in whom CT was found normal; lumbar puncture is therefore regarded as mandatory in people with suspected SAH if imaging is negative. At least three tubes of CSF are collected. If an elevated number of red blood cells is present equally in all bottles, this indicates a subarachnoid hemorrhage. If the number of cells decreases per bottle, it is more likely that it is due to damage to a small blood vessel during the procedure (known as a "traumatic tap"). While there is no official cutoff for red blood cells in the CSF no documented cases have occurred at less than "a few hundred cells" per high-powered field.
The CSF sample is also examined for xanthochromia—the yellow appearance of centrifugated fluid. This can be determined by spectrophotometry (measuring the absorption of particular wavelengths of light) or visual examination. It is unclear which method is superior. Xanthochromia remains a reliable ways to detect SAH several days after the onset of headache. An interval of at least 12 hours between the onset of the headache and lumbar puncture is required, as it takes several hours for the hemoglobin from the red blood cells to be metabolized into bilirubin.
Both computed tomography angiography (CTA) and magnetic resonance angiography (MRA) have been proved to be effective in diagnosing intracranial vascular malformations after ICH. So frequently, a CT angiogram will be performed in order to exclude a secondary cause of hemorrhage or to detect a "spot sign".
Intraparenchymal hemorrhage can be recognized on CT scans because blood appears brighter than other tissue and is separated from the inner table of the skull by brain tissue. The tissue surrounding a bleed is often less dense than the rest of the brain because of edema, and therefore shows up darker on the CT scan.
When due to high blood pressure, they typically occur in the putamen or thalamus (60%), cerebrum (20%), cerebellum (13%) or pons (7%).
CT scan (computed tomography) is the definitive tool for accurate diagnosis of an intracranial hemorrhage. In difficult cases, a 3T-MRI scan can also be used.
When ICP is increased the heart rate may be decreased.
A "subarachnoid hemorrhage" is bleeding into the subarachnoid space—the area between the arachnoid membrane and the pia mater surrounding the brain. Besides from head injury, it may occur spontaneously, usually from a ruptured cerebral aneurysm. Symptoms of SAH include a severe headache with a rapid onset ("thunderclap headache"), vomiting, confusion or a lowered level of consciousness, and sometimes seizures. The diagnosis is generally confirmed with a CT scan of the head, or occasionally by lumbar puncture. Treatment is by prompt neurosurgery or radiologically guided interventions with medications and other treatments to help prevent recurrence of the bleeding and complications. Since the 1990s, many aneurysms are treated by a minimal invasive procedure called "coiling", which is carried out by instrumentation through large blood vessels. However, this procedure has higher recurrence rates than the more invasive craniotomy with clipping.
It is important that a person receive medical assessment, including a complete neurological examination, after any head trauma. A CT scan or MRI scan will usually detect significant subdural hematomas.
Subdural hematomas occur most often around the tops and sides of the frontal and parietal lobes. They also occur in the posterior cranial fossa, and near the falx cerebri and tentorium cerebelli. Unlike epidural hematomas, which cannot expand past the sutures of the skull, subdural hematomas can expand along the inside of the skull, creating a concave shape that follows the curve of the brain, stopping only at the dural reflections like the tentorium cerebelli and falx cerebri.
On a CT scan, subdural hematomas are classically crescent-shaped, with a concave surface away from the skull. However, they can have a convex appearance, especially in the early stage of bleeding. This may cause difficulty in distinguishing between subdural and epidural hemorrhages. A more reliable indicator of subdural hemorrhage is its involvement of a larger portion of the cerebral hemisphere since it can cross suture lines, unlike an epidural hemorrhage. Subdural blood can also be seen as a layering density along the tentorium cerebelli. This can be a chronic, stable process, since the feeding system is low-pressure. In such cases, subtle signs of bleeding such as effacement of sulci or medial displacement of the junction between gray matter and white matter may be apparent. A chronic bleed can be the same density as brain tissue (called isodense to brain), meaning that it will show up on CT scan as the same shade as brain tissue, potentially obscuring the finding.
Intracerebral hemorrhages is a severe condition requiring prompt medical attention. Treatment goals include lifesaving interventions, supportive measures, and control of symptoms. Treatment depends on the location, extent, and cause of the bleeding. Often, treatment can reverse the damage that has been done.
A craniotomy is sometimes done to remove blood, abnormal blood vessels, or a tumor. Medications may be used to reduce swelling, prevent seizures, lower blood pressure, and control pain.
Treatment of a subdural hematoma depends on its size and rate of growth. Some small subdural hematomas can be managed by careful monitoring until the body heals itself. Other small subdural hematomas can be managed by inserting a temporary small catheter through a hole drilled through the skull and sucking out the hematoma; this procedure can be done at the bedside. Large or symptomatic hematomas require a craniotomy, the surgical opening of the skull. A surgeon then opens the dura, removes the blood clot with suction or irrigation, and identifies and controls sites of bleeding. Postoperative complications include increased intracranial pressure, brain edema, new or recurrent bleeding, infection, and seizure. The injured vessels must be repaired.
Depending on the size and deterioration, age of the patient, and anaesthetic risk posed, subdural hematomas occasionally require craniotomy for evacuation; most frequently, simple burr holes for drainage; often conservative treatment; and rarely, palliative treatment in patients of extreme age or with no chance of recovery.
In those with a chronic subdural hematoma, but without a history of seizures, the evidence is unclear if using anticonvulsants is harmful or beneficial.
Treatment focuses on monitoring and should be accomplished with inpatient floor service for individuals responsive to commands or neurological ICU observation for those with impaired levels of consciousness. Extra attention should be placed on intracranial pressure (ICP) monitoring via an intraventricular catheter and medications to maintain ICP, blood pressure, and coagulation. In more severe cases an external ventricular drain may be required to maintain ICP and evacuate the hemorrhage, and in extreme cases an open craniotomy may be required. In cases of unilateral IVH with small intraparenchymal hemorrhage the combined method of stereotaxy and open craniotomy has produced promising results.
An AVM diagnosis is established by neuroimaging studies after a complete neurological and physical examination. Three main techniques are used to visualize the brain and search for AVM: computed tomography (CT), magnetic resonance imaging (MRI), and cerebral angiography. A CT scan of the head is usually performed first when the subject is symptomatic. It can suggest the approximate site of the bleed. MRI is more sensitive than CT in the diagnosis of AVMs and provides better information about the exact location of the malformation. More detailed pictures of the tangle of blood vessels that compose an AVM can be obtained by using radioactive agents injected into the blood stream. If a CT is used in conjunctiangiogram, this is called a computerized tomography angiogram; while, if MRI is used it is called magnetic resonance angiogram. The best images of an AVM are obtained through cerebral angiography. This procedure involves using a catheter, threaded through an artery up to the head, to deliver a contrast agent into the AVM. As the contrast agent flows through the AVM structure, a sequence of X-ray images are obtained.
Antenatal corticosteroids have a role in reducing incidence of germinal matrix hemorrhage in premature infants.
Many laboratories rely on only the color of the cerebrospinal fluid to determine the presence or absence of xanthochromia. However, recent guidelines suggest that spectrophotometry should be performed. Spectrophotometry relies on the different transmittance, or conversely, absorbance, of light by different substances or materials, including solutes. Bilirubin absorbs light at wavelengths between 450–460 nm. Spectrophotometry can also detect the presence of oxyhemoglobin and methemoglobin, which absorb light at 410-418 nm and 403-410 nm, respectively, and also may indicate that bleeding has occurred; to identify substances in cerebrospinal fluid that absorb light at other wavelengths but are not due to bleeding, such as carotenoids; and to detect very small amounts of yellow color saturation (about 0.62%) which may be missed by visual inspection, especially when the cerebrospinal fluid has been examined under incandescent lighting or a tungsten desk lamp (corresponding to International Commission on Illumination standard illuminant A).
Visual inspection is the most frequent method used in the United States to assess cerebrospinal fluid for xanthochromia, while spectrophotometry is used on up to 94% of specimens in the United Kingdom. There is still disagreement about whether or not to routinely use spectrophotometry or whether visual inspection is adequate, and one group of authors has even advocated measuring bilirubin levels.
IVH in the preterm brain usually arises from the germinal matrix whereas IVH in the term infants originates from the choroid plexus. However, it is particularly common in premature infants or those of very low birth weight. The cause of IVH in premature infants, unlike that in older infants, children or adults, is rarely due to trauma. Instead it is thought to result from changes in perfusion of the delicate cellular structures that are present in the growing brain, augmented by the immaturity of the cerebral circulatory system, which is especially vulnerable to hypoxic ischemic encephalopathy. The lack of blood flow results in cell death and subsequent breakdown of the blood vessel walls, leading to bleeding. While this bleeding can result in further injury, it is itself a marker for injury that has already occurred. Most intraventricular hemorrhages occur in the first 72 hours after birth. The risk is increased with use of extracorporeal membrane oxygenation in preterm infants. Congenital cytomegalovirus infection can be an important cause.
The amount of bleeding varies. IVH is often described in four grades:
- Grade I - bleeding occurs just in the germinal matrix
- Grade II - bleeding also occurs inside the ventricles, but they are not enlarged
- Grade III - ventricles are enlarged by the accumulated blood
- Grade IV - bleeding extends into the brain tissue around the ventricles
Grades I and II are most common, and often there are no further complications. Grades III and IV are the most serious and may result in long-term brain injury to the infant. After a grade III or IV IVH, blood clots may form which can block the flow of cerebrospinal fluid, leading to increased fluid in the brain (hydrocephalus).
There have been various therapies employed into preventing the high rates of morbidity and mortality, including diuretic therapy, repeated lumbar puncture, streptokinase therapy and most recently combination a novel intervention called DRIFT (drainage, irrigation and fibrinolytic therapy).
In 2002, a Dutch retrospective study analysed cases where neonatologists had intervened and drained CSF by lumbar or ventricular punctures if ventricular width (as shown on ultrasound) exceeded the 97th centile as opposed to the 97th centile plus 4 mm. Professors Whitelaw's original Cochrane review published in 2001 as well as evidence from previous randomised control trials indicated that interventions should be based on clinical signs and symptoms of ventricular dilatation. An international trial has instead looked an early (97th centile) versus late (97th centile plus 4 mm) for intervening and draining CSF.
DRIFT has been tested in an international randomised clinical trial; although it did not significantly lower the need for shunt surgery, severe cognitive disability at two years Bayley (MDI <55) was significantly reduced. Repeated lumbar punctures are used widely to reduce the effects in increased intracranial pressure and an alternative to ventriculoperitoneal (VP) shunt surgery that cannot be performed in case of intraventricular haemorrhage. The relative risk of repeated lumbar puncture is close to 1.0, therefore it is not statistically therapeutic when compared to conservative management and does raise the risk of subsequent CSF infection.
A limitation of the Spetzler-Martin Grading system is that it does not include the following factors: Patient age, hemorrhage, diffuseness of nidus, and arterial supply. In 2010 a new supplemented Spetzler-Martin system (SM-supp, Lawton-Young) was devised adding these variables to the SM system. Under this new system AVMs are classified from grades 1 - 10. It has since been determined to have greater predictive accuracy that Spetzler-Martin grades alone.
The most important initial investigation is computed tomography of the brain, which is very sensitive for subarachnoid hemorrhage. If this is normal, a lumbar puncture is performed, as a small proportion of SAH is missed on CT and can still be detected as xanthochromia.
If both investigations are normal, the specific description of the headache and the presence of other abnormalities may prompt further tests, usually involving magnetic resonance imaging (MRI). Magnetic resonance angiography (MRA) may be useful in identifying problems with the arteries (such as dissection), and magnetic resonance venography (MRV) identifies venous thrombosis. It is not usually necessary to proceed to cerebral angiography, a more precise but invasive investigation of the brain's blood vessels, if MRA and MRV are normal.
As with other types of intracranial hematomas, the blood may be removed surgically to remove the mass and reduce the pressure it puts on the brain. The hematoma is evacuated through a burr hole or craniotomy. If transfer to a facility with neurosurgery is prolonged trephination may be performed in the emergency department.
No laboratory studies usually are necessary, though serum bilurubin level can be used. Vitamin C deficiency has been reported to possibly be associated with development of cephalohematomas. Skull x-ray or CT scanning is used if neurological symptoms appear. Usual management is mainly observation. Phototherapy may be necessary if blood accumulation is significant leading to jaundice. Rarely anaemia can develop needing blood transfusion. Do not aspirate to remove accumulated blood because of the risk of infection and abscess formation. The presence of a bleeding disorder should be considered but is rare. Skull radiography or CT scanning is also used if concomitant depressed skull fracture is a possibility. It may take weeks and months to resolve and disappear completely.
Diagnosis is confirmed with CT, or bedside ultrasound for less stable patients. Exploratory laparotomy is rarely used, though it may be of benefit in patients with particularly severe hemorrhage. A set of CT scan grading criteria was created to identify the need for intervention (surgery or embolization) in patients with splenic injury. The criteria were established using 20 CT scans from a database of hemodynamically stable patients with blunt splenic injury. These criteria were then validated in 56 consecutive patients retrospectively and appear to reliably predict the need for invasive management in patients with blunt injury to the spleen (sensitivity of 100%, specificity 88%, overall accuracy was 93%).
The study suggested that the following three CT findings correlate with the need for intervention:
1. Devascularization or laceration involving 50% or more of the splenic parenchyma
2. Contrast blush greater than one centimeter in diameter (from active extravasation of IV contrast or pseudoaneurysm formation)
3. A large hemoperitoneum.
On images produced by CT scans and MRIs, epidural hematomas usually appear convex in shape because their expansion stops at the skull's sutures, where the dura mater is tightly attached to the skull. Thus they expand inward toward the brain rather than along the inside of the skull, as occurs in subdural hematoma. The lens-like shape of the hematoma causes the appearance of these bleeds to be "lentiform".
Epidural hematomas may occur in combination with subdural hematomas, or either may occur alone. CT scans reveal subdural or epidural hematomas in 20% of unconscious patients. In the hallmark of epidural hematoma, patients may regain consciousness and appear completely normal during what is called a lucid interval, only to descend suddenly and rapidly into unconsciousness later. The lucid interval, which depends on the extent of the injury, is a key to diagnosing epidural hemorrhage. If the patient is not treated with prompt surgical intervention, death is likely to follow.
Four grades are distinguished (by imaging or histology):
- grade I - hemorrhage is confined to the germinal matrix
- grade II - intraventricular hemorrhage without ventricular dilatation
- grade III - intraventricular hemorrhage with ventricular dilatation
- grade IV - intraventricular rupture and hemorrhage into the surrounding white matter
Management consists of vigilant observation over days to detect progression. The subgaleal space is capable of holding up to 50% of a newborn baby's blood and can therefore result in acute shock and death. Fluid bolus may be required if blood loss is significant and patient becomes tachycardic. Transfusion and phototherapy may be necessary. Investigation for coagulopathy may be indicated.
Treatment has traditionally been splenectomy. However, splenectomy is avoided if possible, particularly in children, to avoid the resulting permanent susceptibility to bacterial infections. Most small, and some moderate-sized lacerations in stable patients (particularly children) are managed with hospital observation and sometimes transfusion rather than surgery. Embolization, blocking off of the hemorrhaging vessels, is a newer and less invasive treatment. When surgery is needed, the spleen can be surgically repaired in a few cases, but splenectomy is still the primary surgical treatment, and has the highest success rate of all treatments.
It may cause seizures but cephalohematoma and caput will not cause seizure