Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Evidence does not support the use of preventative antibiotics regardless of the presence of a cerebral spinal fluid leak.
Non-displaced fractures usually heal without intervention. Patients with basilar skull fractures are especially likely to get meningitis. Unfortunately, the efficacy of prophylactic antibiotics in these cases is uncertain.
A bone fracture may be diagnosed based on the history given and the physical examination performed. Radiographic imaging often is performed to confirm the diagnosis. Under certain circumstances, radiographic examination of the nearby joints is indicated in order to exclude dislocations and fracture-dislocations. In situations where projectional radiography alone is insufficient, Computed Tomography (CT) or Magnetic Resonance Imaging (MRI) may be indicated.
A compound elevated skull fracture is a rare type of skull fracture where the fractured bone is elevated above the intact outer table of the skull. This type of skull fracture is always compound in nature. It can be caused during an assault with a weapon where the initial blow penetrates the skull and the underlying meninges and, on withdrawal, the weapon lifts the fractured portion of the skull outward. It can also be caused the skull rotating while being struck in a case of blunt force trauma, the skull rotating while striking an inanimate object as in a fall, or it may occur during transfer of a patient after an initial compound head injury.
A fracture in conjunction with an overlying laceration that tears the epidermis and the meninges—or runs through the paranasal sinuses and the middle ear structures, putting the outside environment in contact with the cranial cavity—is a compound fracture.
Compound fractures may either be clean or contaminated. Intracranial air (pneumocephalus) may occur in compound skull fractures.
The most serious complication of compound skull fractures is infection. Increased risk factors for infection include visible contamination, meningeal tear, loose bone fragments and presenting for treatment more than eight hours after initial injury.
Computed tomography is the most sensitive and specific of the imaging techniques. The facial bones can be visualized as slices through the skeletal in either the axial, coronal or sagittal planes. Images can be reconstructed into a 3-dimensional view, to give a better sense of the displacement of various fragments. 3D reconstruction, however, can mask smaller fractures owing to volume averaging, scatter artifact and surrounding structures simply blocking the view of underlying areas.
Research has shown that panoramic radiography is similar to computed tomography in its diagnostic accuracy for mandible fractures and both are more accurate than plain film radiograph. The indications to use CT for mandible fracture vary by region, but it does not seem to add to diagnosis or treatment planning except for comminuted or avulsive type fractures, although, there is better clinician agreement on the location and absence of fractures with CT compared to panoramic radiography.
When a child experiences a fracture, he or she will have pain and will not be able to easily move the fractured area. A doctor or emergency care should be contacted immediately. In some cases even though the child will not have pain and will still be able to move, medical help must be sought out immediately. To decrease the pain, bleeding, and movement a physician will put a splint on the fractured area. Treatment for a fracture follows a simple rule: the bones have to be aligned correctly and prevented from moving out of place until the bones are healed. The specific treatment applied depends on how severe the fracture is, if it’s an open or closed fracture, and the specific bone involved in the fracture (a hip fracture is treated differently from a forearm fracture for example)
Different treatments for different fractures:
The general treatments for common fractures are as follows:
X-ray is seldom helpful, but a CT scan and an MRI study may help in diagnosis.
Bone scans are positive early on. Dual energy X-ray absorptiometry is also helpful to rule out comorbid osteoporosis.
There are various classification systems of mandibular fractures in use.
Children in general are at greater risk because of their high activity levels. Children that have risk-prone behaviors are at even greater risk.
The use of surgery to treat a Jefferson fracture is somewhat controversial. Non-surgical treatment varies depending on if the fracture is stable or unstable, defined by an intact or broken transverse ligament and degree of fracture of the anterior arch. An intact ligament requires the use of a soft or hard collar, while a ruptured ligament may require traction, a halo or surgery. The use of rigid halos can lead to intracranial infections and are often uncomfortable for individuals wearing them, and may be replaced with a more flexible alternative depending on the stability of the injured bones, but treatment of a stable injury with a halo collar can result in a full recovery. Surgical treatment of a Jefferson fracture involves fusion or fixation of the first three cervical vertebrae; fusion may occur immediately, or later during treatment in cases where non-surgical interventions are unsuccessful. A primary factor in deciding between surgical and non-surgical intervention is the degree of stability as well as the presence of damage to other cervical vertebrae.
Though a serious injury, the long-term consequences of a Jefferson's fracture are uncertain and may not impact longevity or abilities, even if untreated. Conservative treatment with an immobilization device can produce excellent long-term recovery.
In all injuries to the tibial plateau radiographs (commonly called x-rays) are imperative. Computed tomography scans are not always necessary but are sometimes critical for evaluating degree of fracture and determining a treatment plan that would not be possible with plain radiographs. Magnetic Resonance images are the diagnositic modality of choice when meniscal, ligamentous and soft tissue injuries are suspected. CT angiography should be considered if there is alteration of the distal pulses or concern about arterial injury.
A Cochrane review of low-intensity pulsed ultrasound to speed healing in newly broken bones found insufficient evidence to justify routine use. Other reviews have found tentative evidence of benefit. It may be an alternative to surgery for established nonunions.
Vitamin D supplements combined with additional calcium marginally reduces the risk of hip fractures and other types of fracture in older adults; however, vitamin D supplementation alone did not reduce the risk of fractures.
Several indirect measurements on CT can be used to assess ligamentous integrity at the craniocervical junction. The Wackenheim line, a straight line extending along the posterior margin of the clivus through the dens, normally intersects the posterior margin of the tip of the dens on plain film. The basion to axion interval, or BAI, is also used, which is determined by measuring the distance between an imaginary vertical line at the anterior skull base, or basion, at the foramen magnum, and the axis of the cervical spine along its posterior margin, which should measure 12 mm, an assessment more reliable on radiograph than CT. The distance between the atlas and the occipital condyles, the atlanto-occipital interval (AOI), should measure less than 4 mm, and is better assessed on coronal images.
The distances between the dens and surrounding structures are also key features that can suggest the diagnosis, with the normal distance between the dens and basion (BDI) measuring less than 9 mm on CT, and the distance between the dens and atlas (ADI) measuring less than 3 mm on CT, although this can be increased in cases of rheumatoid arthritis due to pannus formation. Lastly, the atlanto-occipital interval can be measured.
The Powers ratio was formerly used, which was the tip of the basion to the spinolaminar line, divided by the distance from the tip of the opisthion to the midpoint of the posterior aspect of the anterior arch of C1. It is no longer recommended due to low sensitivity and difficulty identifying landmarks. It also will miss vertical or posterior displacement of the cervical spine.
X-rays of the chest are taken in people with chest trauma and symptoms of sternal fractures, and these may be followed by CT scanning. Since X-rays taken from the front may miss the injury, they are taken from the side as well.
Management involves treating associated injuries; people with sternal fractures but no other injuries do not need to be hospitalized. However, because it is common for cardiac injuries to accompany sternal fracture, heart function is monitored with electrocardiogram. Fractures that are very painful or extremely out of place can be operated on to fix the bone fragments into place, but in most cases treatment consists mainly of reducing pain and limiting movement. The fracture may interfere with breathing, requiring tracheal intubation and mechanical ventilation.
Patients who have experienced a pathologic fracture will be investigated for the cause of the underlying disease, if it is unknown. Treatment of any underlying disease, such as chemotherapy if indicated for bone cancer, may help to improve the pain of a sternal fracture.
Diagnosis by a doctor’s examination is the most common, often confirmed by x-rays. X-ray is used to display the fracture and the angulations of the fracture. A CT scan may be done in very rare cases to provide a more detailed picture.
Management depends on the severity of the fracture. An undisplaced fracture may be treated with a cast alone. The cast is applied with the distal fragment in palmar flexion and ulnar deviation. A fracture with mild angulation and displacement may require closed reduction. There is some evidence that immobilization with the wrist in dorsiflexion as opposed to palmarflexion results in less redisplacement and better functional status. Significant angulation and deformity may require an open reduction and internal fixation or external fixation. The volar forearm splint is best for temporary immobilization of forearm, wrist and hand fractures, including Colles fracture.
There are several established instability criteria:
dorsal tilt >20°,
comminuted fracture,
abruption of the ulnar styloid process,
intraarticular displacement >1mm,
loss of radial height >2mm.
A higher amount of instability criteria increases the likelihood of operative treatment.
Treatment modalities differ in the elderly.
Repeat Xrays are recommended at one, two, and six weeks to verify proper healing.
Treatment involves fixation of the cervical spine to the skull base, or occipitocervical fusion, using paramedian rods and transpedicular screws with cross-links for stabilization. The patient is subsequently unable to rotate their head in the horizontal plane. If there is obstructive hydrocephalus, a pseudomeningocele can form, which is decompressed at the time of surgery.
Removable splints result in better outcomes than casting in children with torus fractures of the distal radius.
Treatment of this fracture depends on the severity of the fracture. An undisplaced fracture may be treated with a cast alone. A fracture with mild angulation and displacement may require closed reduction. Significant angulation and deformity may require an open reduction and internal fixation. An open fracture will always require surgical intervention.
Diagnosis can be made upon interpretation of anteroposterior and lateral views alone.
The classic Colles fracture has the following characteristics:
- Transverse fracture of the radius
- 2.5 cm (0.98 inches) proximal to the radio-carpal joint
- dorsal displacement and dorsal angulation, together with radial tilt
Other characteristics:
- Radial shortening
- Loss of ulnar inclination≤
- Radial angulation of the wrist
- Comminution at the fracture site
- Associated fracture of the ulnar styloid process in more than 60% of cases.
Treatment is aimed at achieving a stable, aligned, mobile and painless joint and to minimize the risk of post-traumatic osteoarthritis. To achieve this operative or non-operative treatment plans are considered by physicians based on criteria such as patient characteristics, severity, risk of complications, fracture depression and displacement, degree of injury to ligaments and menisci, vascular and neurological compromise.
For early management, traction should be performed early in ward. It can either be Skin Traction or Skeletal Traction. Depends on the body weight of patient and stability of the joint. Schantz pin insertion over the Calcaneum should be done from Medial to lateral side.
Later when condition is stable. Definitive plan would be Buttress Plating and Lag Screw fixation.
The greenstick fracture pattern occurs as a result of bending forces. Activities with a high risk of falling are risk factors. Non-accidental injury more commonly causes spiral (twisting) fractures but a blow on the forearm or shin could cause a green stick fracture. The fracture usually occurs in children and teens because their bones are flexible, unlike adults whose more brittle bones usually break.
The first line treatment should be reduction of movements for 6 to 12 weeks. Wooden-soled shoes or a cast should be given for this purpose. In rare cases in which stress fracture occurs with a cavus foot, plantar fascia release may be appropriate.
Jefferson fracture is often caused by an impact or load on the back of the head, and are frequently associated with diving into shallow water, impact against the roof of a vehicle and falls, and in children may occur due to falls from playground equipment. Less frequently, strong rotation of the head may also result in Jefferson fractures.
Jefferson fractures are extremely rare in children, but recovery is usually complete without surgery.