Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Professional divers are screened for risk factors during initial and periodical medical examination for fitness to dive. In most cases recreational divers are not medically screened, but are required to provide a medical statement before acceptance for training in which the most common and easy to identify risk factors must be declared. If these factors are declared, the diver may be required to be examined by a medical practitioner, and may be disqualified from diving if the conditions indicate.
Asthma, Marfan syndrome, and COPD pose a very high risk of pneumothorax. In some countries these may be considered absolute contraindications, while in others the severity may be taken into consideration. Asthmatics with a mild and well controlled condition may be permitted to dive under restricted circumstances.
A significant part of entry level diver training is focused on understanding the risks and procedural avoidance of barotrauma. Professional divers and recreational divers with rescue training are trained in the basic skills of recognizing and first aid management of diving barotrauma.
As a general rule, any diver who has breathed gas under pressure at any depth who surfaces unconscious, loses consciousness soon after surfacing, or displays neurological symptoms within about 10 minutes of surfacing should be assumed to be suffering from arterial gas embolism.
Symptoms of arterial gas embolism may be present but masked by environmental effects such as hypothermia, or pain from other obvious causes. Neurological examination is recommended when there is suspicion of lung overexpansion injury. Symptoms of decompression sickness may be very similar to, and confused with, symptoms of arterial gas embolism, however, treatment is basically the same. Discrimination between gas embolism and decompression sickness may be difficult for injured divers, and both may occur simultaneously. Dive history may eliminate decompression sickness in many cases, and the presence of symptoms of other lung overexpansion injury would raise the probability of gas embolism.
VALI is most common in patients receiving mechanical ventilation for acute lung injury or acute respiratory distress syndrome (ALI/ARDS).
Possible reasons for predisposition to VALI include:
- An injured lung may be at risk for further injury
- Cyclic atelectasis is particularly common in an injured lung
If a patent foramen ovale (PFO) is suspected, an examination by echocardiography may be performed to diagnose the defect. In this test, very fine bubbles are introduced into a patient's vein by agitating saline in a syringe to produce the bubbles, then injecting them into an arm vein. A few seconds later, these bubbles may be clearly seen in the ultrasound image, as they travel through the patient's right atrium and ventricle. At this time, bubbles may be observed directly crossing a septal defect, or else a patent foramen ovale may be opened temporarily by asking the patient to perform the Valsalva maneuver while the bubbles are crossing through the right heart – an action which will open the foramen flap and show bubbles passing into the left heart. Such bubbles are too small to cause harm in the test, but such a diagnosis may alert the patient to possible problems which may occur from larger bubbles, formed during activities like underwater diving, where bubbles may grow during decompression. A PFO test may be recommended for divers intending to expose themselves to relatively high decompression stress in deep technical diving.
VALI does not need to be distinguished from progressive ALI/ARDS because management is the same in both. Additionally, definitive diagnosis of VALI may not be possible because of lack of sign or symptoms.
Ultrasound is commonly used in the evaluation of people who have sustained physical trauma, for example with the FAST protocol. Ultrasound may be more sensitive than chest X-rays in the identification of pneumothorax after blunt trauma to the chest. Ultrasound may also provide a rapid diagnosis in other emergency situations, and allow the quantification of the size of the pneumothorax. Several particular features on ultrasonography of the chest can be used to confirm or exclude the diagnosis.
Computed tomography (CT, or "CAT scan") is not necessary for the diagnosis of pneumothorax, but it can be useful in particular situations. In some lung diseases, especially emphysema, it is possible for abnormal lung areas such as bullae (large air-filled sacs) to have the same appearance as a pneumothorax on chest X-ray, and it may not be safe to apply any treatment before the distinction is made and before the exact location and size of the pneumothorax is determined. In trauma, where it may not be possible to perform an upright film, chest radiography may miss up to a third of pneumothoraces, while CT remains very sensitive.
A further use of CT is in the identification of underlying lung lesions. In presumed primary pneumothorax, it may help to identify blebs or cystic lesions (in anticipation of treatment, see below), and in secondary pneumothorax it can help to identify most of the causes listed above.
Significant cases of subcutaneous emphysema are easy to diagnose because of the characteristic signs of the condition. In some cases, the signs are subtle, making diagnosis more difficult. Medical imaging is used to diagnose the condition or confirm a diagnosis made using clinical signs. On a chest radiograph, subcutaneous emphysema may be seen as radiolucent striations in the pattern expected from the pectoralis major muscle group. Air in the subcutaneous tissues may interfere with radiography of the chest, potentially obscuring serious conditions such as pneumothorax. It can also reduce the effectiveness of chest ultrasound. On the other hand, since subcutaneous emphysema may become apparent in chest X-rays before a pneumothorax does, its presence may be used to infer that of the latter injury. Subcutaneous emphysema can also be seen in CT scans, with the air pockets appearing as dark areas. CT scanning is so sensitive that it commonly makes it possible to find the exact spot from which air is entering the soft tissues. In 1994, M.T. Macklin and C.C. Macklin published further insights into the pathophysiology of spontaneous Macklin's Syndrome occurring from a severe asthmatic attack.
The presence of subcutaneous emphysema in a person who appears quite ill and febrile after bout of vomiting followed by left chest pain is very suggestive of the diagnosis of Boerhaave's syndrome, which is a life-threatening emergency caused by rupture of the distal esophagus.
Diagnosis is by medical imaging with either plain X ray or CT scan.
Pneumomediastinum is uncommon and occurs when air leaks into the mediastinum. The diagnosis can be confirmed via chest X-ray showing a radiolucent outline around the heart and mediastinum or via CT scanning of the thorax.
First aid is common for both DCS and AGE:
- Monitor the patient for responsiveness, airway, breathing and circulation, resuscitate if necessary.
- Treat for shock.
- Lay the patient on their back, or for drowsy, unconscious, or nauseated victims, on their side.
- Administer 100% oxygen as soon as possible.
- Seek immediate medical assistance, locate a hospital with hyperbaric facilities and plan for possible transport.
- Allow the patient to drink water or isotonic fluids only if responsive, stable, and not suffering from nausea or stomach pain. Administration of intravenous saline solution is preferable.
- Record details of recent dives and responses to first aid treatment and provide to the treating medical specialist. The diving details should include depth and time profiles, breathing gases used and surface intervals.
Rapid diagnosis and treatment are important in the care of TBI; if the injury is not diagnosed shortly after the injury, the risk of complications is higher. Bronchoscopy is the most effective method to diagnose, locate, and determine the severity of TBI, and it is usually the only method that allows a definitive diagnosis. Diagnosis with a flexible bronchoscope, which allows the injury to be visualized directly, is the fastest and most reliable technique. In people with TBI, bronchoscopy may reveal that the airway is torn, or that the airways are blocked by blood, or that a bronchus has collapsed, obscuring more distal (lower) bronchi from view.
Chest x-ray is the initial imaging technique used to diagnose TBI. The film may not have any signs in an otherwise asymptomatic patient. Indications of TBI seen on radiographs include deformity in the trachea or a defect in the tracheal wall. Radiography may also show cervical emphysema, air in the tissues of the neck. X-rays may also show accompanying injuries and signs such as fractures and subcutaneous emphysema. If subcutaneous emphysema occurs and the hyoid bone appears in an X-ray to be sitting unusually high in the throat, it may be an indication that the trachea has been severed. TBI is also suspected if an endotracheal tube appears in an X-ray to be out of place, or if its cuff appears to be more full than normal or to protrude through a tear in the airway. If a bronchus is torn all the way around, the lung may collapse outward toward the chest wall (rather than inward, as it usually does in pneumothorax) because it loses the attachment to the bronchus which normally holds it toward the center. In a person lying face-up, the lung collapses toward the diaphragm and the back. This sign, described in 1969, is called fallen lung sign and is pathognomonic of TBI (that is, it is diagnostic for TBI because it does not occur in other conditions); however it occurs only rarely. In as many as one in five cases, people with blunt trauma and TBI have no signs of the injury on chest X-ray. CT scanning detects over 90% of TBI resulting from blunt trauma, but neither X-ray nor CT are a replacement for bronchoscopy.
At least 30% of TBI are not discovered at first; this number may be as high as 50%. In about 10% of cases, TBI has no specific signs either clinically or on chest radiography, and its detection may be further complicated by concurrent injuries, since TBI tends to occur after high-energy accidents. Weeks or months may go by before the injury is diagnosed, even though the injury is better known than it was in the past.
Recompression treatment in a hyperbaric chamber was initially used as a life-saving tool to treat decompression sickness in caisson workers and divers who stayed too long at depth and developed decompression sickness. Now, it is a highly specialized treatment modality that has been found to be effective in the treatment of many conditions where the administration of oxygen under pressure has been found to be beneficial. Studies have shown it to be quite effective in some 13 indications approved by the Undersea and Hyperbaric Medical Society.
Hyperbaric oxygen treatment is generally preferred when effective, as it is usually a more efficient and lower risk method of reducing symptoms of decompression illness, However, in some cases recompression to pressures where oxygen toxicity is unacceptable may be required to eliminate the bubbles in the tissues that cause the symptoms.
There is ongoing research on the treatment of ARDS by interferon (IFN) beta-1a to aid in preventing leakage of vascular beds. Traumakine (FP-1201-lyo), is a recombinant human IFN beta-1a drug developed by Faron pharmaceuticals, is undergoing international phase-III clinical trials after an open-label, early-phase trial showed a 81% reduction-in-odds of 28-day mortality in ICU patients with ARDS. The drug is known to function by enhancing lung CD73 expression and increasing production of anti-inflammatory adenosine, such that vascular leaking and escalation of inflammation are reduced.
Treatment for the "Decompression Sickness" and the "Arterial Gas Embolism" components of DCI may differ significantly. Refer to the separate treatments under those articles.
Subcutaneous emphysema is usually benign. Most of the time, SCE itself does not need treatment (though the conditions from which it results may); however, if the amount of air is large, it can interfere with breathing and be uncomfortable. It occasionally progresses to a state "Massive Subcutaneous Emphysema" which is quite uncomfortable and requires surgical drainage. When the amount of air pushed out of the airways or lung becomes massive, usually due to positive pressure ventilation, the eyelids swell so much that the patient cannot see. Also the pressure of the air may impede the blood flow to the areolae of the breast and skin of the scrotum or labia. This can lead to necrosis of the skin in these areas. The latter are urgent situations requiring rapid, adequate decompression. Severe cases can compress the trachea and do require treatment.
In severe cases of subcutaneous emphysema, catheters can be placed in the subcutaneous tissue to release the air. Small cuts, or "blow holes", may be made in the skin to release the gas. When subcutaneous emphysema occurs due to pneumothorax, a chest tube is frequently used to control the latter; this eliminates the source of the air entering the subcutaneous space. If the volume of subcutaneous air is increasing, it may be that the chest tube is not removing air rapidly enough, so it may be replaced with a larger one. Suction may also be applied to the tube to remove air faster. The progression of the condition can be monitored by marking the boundaries with a special pencil for marking on skin.
Since treatment usually involves dealing with the underlying condition, cases of spontaneous subcutaneous emphysema may require nothing more than bed rest, medication to control pain, and perhaps supplemental oxygen. Breathing oxygen may help the body to absorb the subcutaneous air more quickly.
Vehicle occupants who wear seat belts have a lower incidence of TBI after a motor vehicle accident. However, if the strap is situated across the front of the neck (instead of the chest), this increases the risk of tracheal injury. Design of medical instruments can be modified to prevent iatrogenic TBI, and medical practitioners can use techniques that reduce the risk of injury with procedures such as tracheotomy.
All divers should be free of conditions and illnesses that would negatively impact their safety and well-being underwater. The diving medical physician should be able to identify, treat and advise divers about illnesses and conditions that would cause them to be at increased risk for a diving accident.
Some reasons why a person should not be allowed to dive are as follows:
- Disorders that lead to altered consciousness: conditions that produce reduced awareness or sedation from medication, drugs, marijuana or alcohol; fainting, heart problems and seizure activity.
- Disorders that substantially increase the risk of barotrauma injury conditions or diseases that are associated with air trapping in closed spaces, such as sinuses, middle ear, lungs and gastrointestinal tract. Severe asthma is an example.
- Disorders that may lead to erratic and irresponsible behavior: included here would be immaturity, psychiatric disorders, diving while under the influence of medications, drugs and alcohol or any medical disorder that results in cognitive defects.
Conditions that may increase risk of diving disorders:
- Patent foramen ovale
- Diabetes mellitus — No serious problems should be expected during dives due to hypoglycaemia in divers with well-controlled diabetes. Long-term complications of diabetes should be considered and may be a contrindication.
- Asthma
Conditions considered temporary reasons to suspend diving activities:
- Pregnancy—It is unlikely that literature research can establish the effect of scuba diving on the unborn human fetus as there is insufficient data, and women tend to comply with the diving industry recommendation not to dive while pregnant.
Radiologic imaging has long been a criterion for diagnosis of ARDS. While original definitions of ARDS specified that correlative chest X-ray findings were required for diagnosis, the diagnostic criteria have been expanded over time to accept CT and ultrasound findings as equally contributory. Generally, radiographic findings of fluid accumulation (pulmonary edema) affecting both lungs and unrelated to increased cardiopulmonary vascular pressure (such as in heart failure) may be suggestive of ARDS.
Ultrasound findings suggestive of ARDS include the following:
- Anterior subpleural consolidations
- Absence or reduction of lung sliding
- “Spared areas” of normal parenchyma
- Pleural line abnormalities (irregular thickened fragmented pleural line)
- Nonhomogeneous distribution of B-lines (a characteristic ultrasound finding suggestive of fluid accumulation in the lungs)
The death rate of people with flail chest depends on the severity of their condition, ranging from 10 to 25%.
Immediate treatment with 100% oxygen, followed by recompression in a hyperbaric chamber, will in most cases result in no long-term effects. However, permanent long-term injury from DCS is possible. Three-month follow-ups on diving accidents reported to DAN in 1987 showed 14.3% of the 268 divers surveyed had ongoing symptoms of Type II DCS, and 7% from Type I DCS. Long-term follow-ups showed similar results, with 16% having permanent neurological sequelae.
The tissues in the mediastinum will slowly resorb the air in the cavity so most pneumomediastinums are treated conservatively. Breathing high flow oxygen will increase the absorption of the air.
If the air is under pressure and compressing the heart, a needle may be inserted into the cavity, releasing the air.
Surgery may be needed to repair the hole in the trachea, esophagus or bowel.
If there is lung collapse, it is imperative the affected individual lies on the side of the collapse, although painful, this allows full inflation of the unaffected lung.
The hypercapnic state is routinely used to calibrate blood-oxygen-level dependent functional magnetic resonance imaging (BOLD fMRI), a modality that is sensitive to changes in blood oxygenation. However, this calibration crucially relies on the assumption that hypercapnia has no effect on neuronal function, which is a matter of debate.
Arterial gas embolism (AGE) is a complication of lung barotrauma of ascent. It occurs when breathing gas is introduced to the circulation on the arterial side via lung over-pressure trauma. AGE can present in similar ways to arterial blockages seen in other medical situations. Affected people may suffer strokes, with paralysis or numbness down one side; they may suffer heart attacks; they may suffer pulmonary embolism with shortness of breath and chest pain. It is often impossible to distinguish AGE from DCS, but luckily it is rarely necessary for physicians to be able to distinguish between the two, as treatment is the same. Sometimes AGE and DCS are lumped into a single entity, Decompression Illness (DCI).