Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Diagnosis of X-SCID is possible through lymphocyte cell counts, lymphocyte function tests, and genetic testing. A healthy immune system should contain large amounts of lymphocytes, but individuals with X-SCID will contain unusually small amounts of T-cells, non-functional B-cells, and some natural killer cells.
Individuals with X-SCID often have decreased lymphocyte function. This can be tested through the introduction of agents to the immune system; the reaction of the lymphocytes is then observed. In X-SCID, Antibody responses to introduced vaccines and infections are absent, and T-cell responses to mitogens, substances that stimulate lymphocyte transformation, are deficient. IgA and IgM immunoglobulins, substances that aid in fighting off infections, are very low.
The absence of a thymic shadow on chest X-rays is also indicative of X-SCID. In a normal child, a distinctive sailboat shaped shadow near the heart can be seen. The thymus gland in normal patients will gradually decrease in size because the need for the thymus gland diminishes. The decrease in the size of the thymus gland occurs because the body already has a sufficient number of developed T-cells. However, a patient with X-SCID will be born with an abnormally small thymus gland at birth. This indicates that the function of thymus gland, of forming developed T-cells, has been impaired.
Since the mutation in X-SCID is X-linked, there are genetic tests for detecting carriers in X-SCID pedigrees. One method is to look for family-specific IL2RG mutations. Finally, if none of those options are available, there is an unusual pattern of nonrandom X-chromosome inactivation on lymphocytes in carriers, thus looking for such inactivation would prove useful.
If a mother is pregnant and the family has a known history of immunodeficiency, then doctors may perform diagnostic assessment in-utero. Chorionic Villus Sampling, which involves sampling of the placental tissue using a catheter inserted through the cervix, can be performed 8 to 10 weeks into gestation. Alternatively, Amniocentesis, which entails extracting a sample of the fluid which surrounds the fetus, can be performed 15 to 20 weeks into gestation.
Early detection of X-SCID (and other types of SCID) is also made possible through detection of T-cell recombination excision circles, or TRECs. TRECs are composed of excised DNA fragments which are generated during normal splicing of T-cell surface antigen receptors and T-cell maturation. This maturation process is absent across all SCID variants, as evidenced by the low counts of T-lymphocytes. The assay is performed using dried blood from a Guthrie card, from which DNA is extracted. Quantitative PCR is then performed and the number of TRECs determined. Individuals who have the SCID phenotype will have TREC counts as low as <30, compared to approximately 1020 for a healthy infant. A low TREC count indicates that there is insufficient development of T-cells in the thymus gland. This technique can predict SCID even when lymphocyte counts are within the normal range. Newborn screening of X-SCID based on TREC count in dried blood samples has recently been introduced in several states in the United States including California, Colorado, Connecticut, Delaware, Florida, Massachusetts, Michigan, Minnesota, Mississippi, New York, Texas, and Wisconsin. In addition, pilot trials are being performed in several other states beginning in 2013.
X-linked SCID is a known pediatric emergency which primarily affects males. If the appropriate treatment such as intravenous immunoglobulin supplements, medications for treating infections or a bone marrow transplant is not administered, then the prognosis is poor. The patients with X-linked SCID usually die two years after they are born. For this reason, the diagnosis of X-linked SCID needs to be done early to prevent any pathogens from infecting the infant.
However, the patients have a higher chance of survival if the diagnosis of X-linked SCID is done as soon as the baby is born. This involves taking preventative measures to avoid any infections that can cause death. For example, David Vetter had a high chance of having X-linked SCID because his elder sibling had died due to SCID. This allowed the doctors to place David in the bubble and prevented infections. In addition, if X-linked SCID is known to affect a child, then live vaccines should not be administered and this can save the infants life. Vaccines, which are pathogens inserted into the body to create an immune response, can lead to death in infants with X-linked SCID. Moreover, with proper treatments, such as a bone marrow transplant, the prognosis is good. The bone marrow transplant has been successful in treating several patients and resulted in a full immune reconstitution and the patient can live a healthy life. The results of bone marrow transplant are most successful when the closest human leukocyte antigen match has been found. If a close match is not found, however, there is a chance of graft-versus-host-disease which means the donor bone marrow attacks the patient's body. Hence, a close match is required to prevent any complications.
The old diagnostic criteria for the illness included: Chronic non-malignant lymphoproliferation, elevated peripheral blood DNTs and defective in vitro Fas mediated apoptosis.
The new criteria require chronic non-malignant lymphoproliferation (over six months lymphadenopathy and/or splenomegaly), elevated peripheral blood DNTs. A primary accessory in diagnosis is defective in vitro Fas mediated apoptosis and somatic or germline mutation in ALPS causative gene (FAS, FASL, CASP10).
The secondary accessory in diagnosis are elevated biomarkers (plasma sFASL over 200 pg/ml, plasma IL-10 >20 pg/ml, plasma or serum vitamin B12 >1500 ng/L, Plasma IL-18 >500pg/ml) and immunohistochemical findings on biopsy consistent with ALPS as determined by an experienced hematopathologist. Another sign is autoimmune cytopenias and polyclonal hypergammaglobulinemia and a family history of ALPS or non-malignant lymphoproliferation.
A definitive diagnosis is chronic non-malignant lymphoproliferation and/or elevated peripheral blood DNTs plus one primary accessory criterion. A probable diagnosis is the same but with one secondary accessory criterion.
Criteria for the clinically defined diagnosis of lymphocyte-variant hypereosinophilia have not been strictly set forth. Diagnosis must first rule out other causes of eosinophilia and hypereosinophilia, such as those due to allergies, drug reactions, infestations, and autoimmune diseases as well as those associated with eosinophilic leukemia, clonal eosinophilia, systemic mastocytosis, and other malignancies (see causes of eosinophilia). Criteria for the diagnosis include findings of: a) long term hypereosinophila (i.e. eosinophil blood counts >1,500/microliter) plus physical findings and symptoms associated with the disease; b) bone marrow analysis showing abnormally high levels of eosinophils; c) elevated serum levels of Immunoglobulin E, other immunoglobulins, and CCL17; d) eosinophil infiltrates in afflicted tissues; e) increased numbers of blood and/or bone marrow T cells bearing abnormal immunophenotype cluster of differentiation markers as defined by fluorescence-activated cell sorting (see above section on Pathogenesis); f) abnormal T cell receptor arrangements as defined by polymerase chain reaction methods (see above section on Pathogenesis); and g) evidence of excessive IL-5 secretion by lymphocytes (see above section on Pathogenesis). In many clinical settings, however, studies on the T cell receptor and IL-5 are not available and therefore not routine parts of the diagnostic work-up or criteria for the disease. The finding of T cells bearing abnormal immunophenotype cluster of differentiation markers is critical to making the diagnosis.
Flow cytometry with monoclonal antibodies is used to screen for deficiencies of CD18.
The basic tests performed when an immunodeficiency is suspected should include a full blood count (including accurate lymphocyte and granulocyte counts) and immunoglobulin levels (the three most important types of antibodies: IgG, IgA and IgM).
Other tests are performed depending on the suspected disorder:
- Quantification of the different types of mononuclear cells in the blood (i.e. lymphocytes and monocytes): different groups of T lymphocytes (dependent on their cell surface markers, e.g. CD4+, CD8+, CD3+, TCRαβ and TCRγδ), groups of B lymphocytes (CD19, CD20, CD21 and Immunoglobulin), natural killer cells and monocytes (CD15+), as well as activation markers (HLA-DR, CD25, CD80 (B cells).
- Tests for T cell function: skin tests for delayed-type hypersensitivity, cell responses to mitogens and allogeneic cells, cytokine production by cells
- Tests for B cell function: antibodies to routine immunisations and commonly acquired infections, quantification of IgG subclasses
- Tests for phagocyte function: reduction of nitro blue tetrazolium chloride, assays of chemotaxis, bactericidal activity.
Due to the rarity of many primary immunodeficiencies, many of the above tests are highly specialised and tend to be performed in research laboratories.
Criteria for diagnosis were agreed in 1999. For instance, an antibody deficiency can be diagnosed in the presence of low immunoglobulins, recurrent infections and failure of the development of antibodies on exposure to antigens. The 1999 criteria also distinguish between "definitive", "probable" and "possible" in the diagnosis of primary immunodeficiency. "Definitive" diagnosis is made when it is likely that in 20 years, the patient has a >98% chance of the same diagnosis being made; this level of diagnosis is achievable with the detection of a genetic mutation or very specific circumstantial abnormalities. "Probable" diagnosis is made when no genetic diagnosis can be made, but the patient has all other characteristics of a particular disease; the chance of the same diagnosis being made 20 years later is estimated to be 85-97%. Finally, a "possible" diagnosis is made when the patient has only some of the characteristics of a disease are present, but not all.
Lymphocyte-variant hypereosinophilia usually takes a benign and indolent course. Long term treatment with corticosteroids lowers blood eosinophil levels as well as suppresses and prevents complications of the disease in >80% of cases. However, signs and symptoms of the disease recur in virtually all cases if corticosteroid dosages are tapered in order to reduce the many adverse side effects of corticosteroids. Alternate treatments used to treat corticosteroid resistant disease or for use as corticosteroid-sparing substitutes include interferon-α or its analog, Peginterferon alfa-2a, Mepolizumab (an antibody directed against IL-5), Ciclosporin (an Immunosuppressive drug), imatinib (an inhibitor of tyrosine kinases; numerous tyrosine kinase cell signaling proteins are responsible for the growth and proliferation of eosinophils {see clonal eosinophilia}), methotrexate and Hydroxycarbamide (both are chemotherapy and immunosuppressant drugs), and Alemtuzumab (a antibody that binds to the CD52 antigen on mature lymphocytes thereby marking them for destruction by the body). The few patients who have been treated with these alternate drugs have exhibited good responses in the majority of instances. Reslizumab, a newly developed antibody directed against interleukin 5 that has been successfully used to treat 4 patients with the hypereosinophilic syndrome, may also be of use for lymphocyte-variant eosinophilia. Patients suffering minimal or no disease complications have gone untreated.
In 10% to 25% of patients, mostly 3 to 10 years after initical diagnosis, the indolent course of lymphocyte-variant hypereosinophilia changes. Patients exhibit rapid increases in lymphadenopathy, spleen size, and blood cell numbers, some cells of which take on the appearance of immature and/or malignant cells. Their disease soon thereafter escalates to an angioimmunoblastic T-cell lymphoma, peripheral T cell lymphoma, Anaplastic large-cell lymphoma (which unlike most lymphomas of this type is Anaplastic lymphoma kinase-negative), or Cutaneous T cell lymphoma. The malignantly transformed disease is aggressive and has a poor prognosis. Recommended treatment includes chemotherapy with Fludarabine, Cladribine, or the CHOP combination of drugs followed by bone marrow transplantation.
2003 nomenclature
- IA - Fas
- IB - Fas ligand
- IIA - Caspase 10
- IIB - Caspase 8
- III - unknown
- IV - Neuroblastoma RAS viral oncogene homolog
Revised nomenclature (2010)
- ALPS-FAS: Fas. Germline FAS mutations. 70% of patients. Autosomal dominant. Dominant negative and haploinsufficient mutations described.
- ALPS-sFAS: Fas. Somatic FAS mutations in DNT compartment. 10% of patients
- ALPS-FASL: Fas ligand. Germline FASL mutations. 3 reported cases
- ALPS-CASP10: Caspase 10. Germline CASP10 mutation. 2% of patients
- ALPS-U: Undefined. 20% of patients
- CEDS: Caspase 8 deficiency state. No longer considered a subtype of ALPS but distinct disorder
- RALD: NRAS, KRAS. Somatic mutations in NRAS and KRAS in lympocyte compartment. No longer considered a subtype of ALPS but distinct disesase
Patients show markedly low immunoglobulin levels of IgG, IgA, and IgM.
Though BLSII is an attractive candidate for gene therapy, bone marrow transplant is currently the only treatment.
Because the CD18 gene has been cloned and sequenced, this disorder is a potential candidate for gene therapy.
The diagnosis relies on the findings outlined above. In addition, other specific markers of macrophage activation (e.g. soluble CD163), and lymphocyte activation (e.g. soluble IL-2 receptor) can be helpful. NK cell function analysis may show depressed NK function, or, flow cytometry may show a depressed NK cell population.
CD25 deficiency or interleukin 2 receptor alpha deficiency is an immunodeficiency disorder associated with mutations in the interleukin 2 receptor alpha (CD25) (IL2RA) gene. The mutations cause expression of a defective α chain or complete absence thereof, an essential part of high-affinity interleukin-2 (IL-2) receptors. The result is a syndrome described as IPEX-like or a SCID.
In one patient, deficiency of CD25 on CD4+ lymphocytes caused significantly impaired sensitivity to IL-2. This was demonstrated by a lack of measurable response in anti-inflammatory interleukin-10 (IL-10) secretion to low-dose IL-2 incubation. Greatly reduced IL-10 secretion compared to healthy humans results in a syndrome comparable to IPEX syndrome, a type of autoimmunity which is caused by FoxP3 transcription factor dysfunction. In addition to IPEX-like symptoms, CD25 deficiency increases susceptibility to viral infections and possibly fungal and bacterial infections.
As IL-2 is an important inducer of lymphocyte proliferation, the absence of highly sensitive IL-2 receptors may also significantly hinder activation and clonal expansion of CD8+ and CD4+ lymphocytes and NK cells. One case also reported the absence of CD1, a MHC-like glycoprotein involved in the presentation of lipid antigens to T cells, in a CD25 deficient patient. Furthermore, chronic upregulation of anti-apoptotic Bcl-2 in thymocytes was also described possibly allowing autoreactive T cells to escape deletion.
Immunodeficiency with hyper IgM type 4 is poorly characterized. All that is known is that there is an excess of IgM in the blood, with normal levels of the other immunoglobulins. The exact cause is yet to be determined.
Bone marrow transplant may be possible for Severe Combined Immune Deficiency and other severe immunodeficiences.
Virus-specific T-Lymphocytes (VST) therapy is used for patients who have received hematopoietic stem cell transplantation that has proven to be unsuccessful. It is a treatment that has been effective in preventing and treating viral infections after HSCT. VST therapy uses active donor T-cells that are isolated from alloreactive T-cells which have proven immunity against one or more viruses. Such donor T-cells often cause acute graft-versus-host disease (GVHD), a subject of ongoing investigation. VSTs have been produced primarily by ex-vivo cultures and by the expansion of T-lymphocytes after stimulation with viral antigens. This is carried out by using donor-derived antigen-presenting cells. These new methods have reduced culture time to 10–12 days by using specific cytokines from adult donors or virus-naive cord blood. This treatment is far quicker and with a substantially higher success rate than the 3–6 months it takes to carry out HSCT on a patient diagnosed with a primary immunodeficiency. T-lymphocyte therapies are still in the experimental stage; few are even in clinical trials, none have been FDA approved, and availability in clinical practice may be years or even a decade or more away.
The 5 year survival has been noted as 89% in at least one study from France of 201 patients with T-LGL leukemia.
Immunodeficiency with hyper IgM type 5 is caused by a mutation in the Uracil-DNA glycosylase (UNG) gene, which, like AICDA, is located on chromosome 12. This codes for Uracil DNA Glycosylase, which is responsible for excising previous uracil bases that are due to cytosine deamination, or previous uracil misincorporation from double-stranded previous DNA substrates. This enzyme is also responsible for helping with gene conversion during somatic recombination in B cells. The mutation in the gene causes an enzyme that does not function properly, thus gene conversion does not proceed and class switching cannot occur.
The bare lymphocyte syndrome, type II (BLS II) is a rare recessive genetic condition in which a group of genes called major histocompatibility complex class II (MHC class II) are not expressed.
The result is that the immune system is severely compromised and cannot effectively fight infection. Clinically, this is similar to severe combined immunodeficiency (SCID), in which lymphocyte precursor cells are improperly formed. As a notable contrast, however, bare lymphocyte syndrome does not result in decreased B- and T-cell counts, as the development of these cells is not impaired.
Diarrhea can be among the associated conditions.
Gleich's syndrome, which may be a form of lymphocyte-variant hypereosinophilia, involves hypereosinophilia, elevated blood levels of IgM antibodies, and clonal expansion of T cells. Similar to lymphocyte=variant hypereosinophilia, the increased levels of blood eosinophils in Gleich's syndrome is thought to be secondary to the secretion of eosinophil-stimulating cytokines by a T cell clone(s).
A new investigation has identified a seemingly successful treatment for LRBA deficiency by targeting CTLA4. Abatacept, an approved drug for rheumatoid arthritis, mimics the function of CTLA4 and has found to reverse life-threatening symptoms. The study included nine patients that exhibited improved clinical status and halted inflammatory conditions with minimal infectious or autoimmune complications. The study also suggests that therapies like chloroquine or hydroxychloroquine, which inhibit lysosomal degradation, may prove to be effective, as well. Larger cohorts are required to further validate these therapeutic approaches as effective long-term treatments for this disorder.
Familial eosinophilia is a rare congenital disorder characterized by the presence of sustained elevations in blood eosinophil levels that reach ranges diagnostic of eosinophilia or, far more commonly, hypereosinophilia. It is an autosomal dominant disorder in which genetic linkage gene mapping family studies localize the gene responsible for it to chromosome 5 at position q31-q33, between markers D5S642 and D5S816. This region contains a cytokine gene cluster which includes three genes whose protein products function in regulating the development and proliferation of eosinophils viz., interleukin 3, interleukin 5, and colony stimulating factor 2. However, no functional sequence genetic polylmophisms are found within the promoter, exons, or introns, of these genes or within the common gene enhancer for interleukin 3 or colony stimulating factor 2. This suggests that the primary defect in familial eosinophilia is not a mutation in one of these genes but rather in another gene within this chromosome area. Clinical manifestations and tissue destruction related to the eosinophilia in this disorder are uncommon: familial eosinophilia typically has a benign phenotype compared to other congenital and acquired eosinophilic diseases.
Clonal rearrangements of the T-cell receptor (TCR) genes are a necessary condition for the diagnosis of this disease. The gene for the β chain of the TCR is found to be rearranged more often than the γ chain. of the TCR.
Diagnosis is by complete blood count (CBC). However, in some cases, a more accurate absolute eosinophil count may be needed. Medical history is taken, with emphasis on travel, allergies and drug use. Specific test for causative conditions are performed, often including chest x-ray, urinalysis, liver and kidney function tests, and serologic tests for parasitic and connective tissue diseases. The stool is often examined for traces of parasites (i.e. eggs, larvae, etc.) though a negative test does not rule out parasitic infection; for example, trichinosis requires a muscle biopsy. Elevated serum B or low white blood cell alkaline phosphatase, or leukocytic abnormalities in a peripheral smear indicates a disorder of myeloproliferation. In cases of idiopathic eosinophilia, the patient is followed for complications. A brief trial of corticosteroids can be diagnostic for allergic causes, as the eosinophilia should resolve with suppression of the immune over-response. Neoplastic disorders are diagnosed through the usual methods, such as bone marrow aspiration and biopsy for the leukemias, MRI/CT to look for solid tumors, and tests for serum LDH and other tumor markers.
A lymphocyte is one of the subtypes of white blood cell in a vertebrate's immune system. Lymphocytes include natural killer cells (Phagocytes) (which function in cell-mediated, cytotoxic innate immunity), T cells (for cell-mediated, cytotoxic adaptive immunity), and B cells (for humoral, antibody-driven adaptive immunity). They are the main type of cell found in lymph, which prompted the name "lymphocyte".
Pralatrexate is one compound currently under investigations for the treatment of PTCL.